
MR9401V2

EOSDIS Core System
Communications and Systems

Management Architecture

White Paper
Working Paper

April 1994

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Carl Wheatley /s/ 4/29/94

Carl Wheatley, CSMS Chief Engineer April 29, 1994
EOSDIS Core System Project

SUBMITTED BY

E. M. Lerner /s/ 4/29/94

Ed Lerner, CSMS Office Manager April 29, 1994
EOSDIS Core System Project

Hughes Applied Information Systems, Inc.
Landover, Maryland

This page intentionally left blank.

Working Paper iii MR9401V2

Contents

1. Introduction

1.1 Purpose .. 1

1.2 Organization.. 1

1.3 Review and Approval. 2

2. Background

2.1 Architecture Definition Process.. 3

2.2 Related documents .. 5

2.3 ECS Context . 5

2.4 CSMS Context and Sub-Architecture Divisions.. 5

2.4.1 Communication Sub-Architecture .. 7

2.4.2 Internetworking Sub-Architecture.. 8

2.4.3 System Management Sub-Architecture .. 9

3. Communications Sub-Architecture

3.1 Assessment of Needs/Drivers.. 11

3.2 Logical Architecture.. 11

3.2.1 Framework Approach.. 11

3.2.2 Open Distributed Processing (ODP) .. 13

3.2.3 Distributed Object Management Systems.. 17

3.3 Implementation Architecture .. 20

3.3.1 Important Architectures.. 20

3.3.2 OMG Architecture Overview.. 25

3.3.3 Communications Sub-Architecture Discussion .. 35

3.4 Issues .. 55

3.4.1 Development Environment .. 55

3.4.2 Interoperability Issues .. 56

Working Paper iv MR9401V2

3.4.3 Quality of Service .. 57

3.4.4 Policy Implications.. 58

3.4.5 Incremental and EP Track Planning/Coordination.................................... 60

3.4.6 Multimedia Extensions... 60

3.4.7 Market Forces and Competition .. 60

4. Internetworking Sub-Architecture

4.1 Assessment of Needs/Drivers.. 61

4.2 Logical Architecture.. 62

4.2.1 Introduction to OSI-RM ... 62

4.2.2 Transport Layer... 66

4.2.3 Network Layer.. 67

4.2.4 Data Link Layer... 67

4.2.5 Physical Layer .. 67

4.3 Implementation Architecture .. 68

4.3.1 Internetworking Services.. 68

4.3.2 Transport Services .. 68

4.3.3 Network Services .. 70

4.3.4 Data Link and Physical Layer Services .. 71

4.3.5 Network Security Architecture.. 71

4.3.6 Network Topology Architecture.. 72

4.4 Issues .. 72

4.4.1 Performance Issues .. 72

4.4.2 Multimedia Issues .. 73

4.4.3 ATM Issues .. 74

4.4.4 Fixed Format Protocols.. 75

5. System Management Sub-Architecture

5.1 Assessment of Needs/Drivers.. 76

5.2 Logical Architecture.. 77

5.2.1 Hierarchical Architecture .. 78

5.2.2 Federated Architecture .. 80

Working Paper v MR9401V2

5.3 Implementation Architecture .. 81

5.3.1 Manager Architectural Alternatives.. 81

5.3.2 Managed Object Alternatives.. 95

5.3.3 Systems Management Sub-Architecture Discussion .. 98

5.3.4 Managed System Object Classes .. 104

5.4 Issues .. 105

Figures

1. Dimensions of Architectural Analysis... 3

2. ECS Object Model Context... 6

3. CSMS Object Model Context . 6

4. CSMS Sub-Architecture Decomposition .. 7

5. Communications Services.. 8

6. InternetworkingServices.. 9

7. System ManagementServices .. 10

8. API Maturation for Communication Services.. 13

9. ODP Channel Negotiation with Transparency Objects.. 15

10. ODP Trader .. 16

11. DOM Architectural Concept.. 18

12. Example Service Flow Scenario using DOMS... 20

13. DCE Conceptual Model... 23

14. Object-Based SDO and Consortia Activities . 26

15. Object Management Architecture .. 27

16. ORB Concept .. 28

17. ORB Core and CORBA Interfaces .. 28

18. Basic Object Adapter (BOA) .. 31

19. DSOM/DOMF Architecture .. 34

20. Object Services RFP Timetable.. 36

21. Event Service .. 39

Working Paper vi MR9401V2

22. Security Service in a Typical Object Request . 40

23. File Transfer Service.. 47

24. Mail Service.. 47

25. Printer Directory Service .. 48

26. Example of Dynamic Property Notification .. 49

27. Service Export . 53

28. Service Import . 54

29. Federated Trading .. 55

30. Communication Involving Relay Open Systems .. 66

31. Topology Considerations for Physical Layer .. 68

32. Security Mechanisms .. 72

33. Systems Management Logical Architecture .. 78

34. Systems Management Hierarchical Architecture.. 79

35. Compensated Hierarchical Architecture... 80

36. Federated Architecture .. 80

37. SNMP Operations Summary... 82

38. ISO Systems Management Framework.. 85

39. DME Functional Architecture .. 89

40. DME MF Architecture with DCE Context. 90

41. NMF OMNIPoint Model .. 92

42. X/Open Systems Management Framework .. 94

43. NMF OMNIPoint Framework Architecture.. 99

44. System Administration Service .. 100

45. Management Infrastructure Objects . 101

46. Example of Policy to Conserve Resources.. 102

47. Collection Service .. 104

A-1. ODP Viewpoint Languages .. 2

A-2. Simplified Engineering Model .. 5

A-3. ODP Node.. 6

Working Paper vii MR9401V2

A-4. ODP Capsules and Clusters.. 7

B-1. Client/Server Model and Sequence of Communication .. 1

B-2. Remote Procedure Call . 2

B-3. Role of RPC Interface .. 3

B-4. Data Sharing Model in a closed system... 4

B-5. Data Sharing Model in a distributed system... 4

B-6. DCE Architecture.. 5

F-1. DME Architecture .. 1

F-2. DME Network Management Option (NMO) ... 5

H-1. SDO and Consortia Software Activities . 1

Tables

1. Importance of Technology Drivers.. 12

2. Technology Driver Mapping to Primary Systems/Technologies............................. 22

3. Communication Mode Functions.. 64

4. TCP and TP4 Comparision .. 70

5. Managed Object Definitions in Work .. 97

Appendix A. Open Distributed

Appendix B. OSF Distributed

Appendix C. SNMP Management Notes

Appendix D. Notes on ISO/CCITT

Appendix E. Notes on GNMP

Working Paper viii MR9401V2

Appendix F. Notes on OSF DME

Appendix G. Major Database Query Efforts Applicable to ECS

Appendix H. Major User and Vendor Driven
Consortia Applicable to ECS

Abbreviations and Acronyms

Bibliography

Working Paper ix MR9401V2

This page intentionally left blank.

Working Paper 1 MR9401V2

1. Introduction

1.1 Purpose

The purpose of this document is to present a detailed end-system architecture of the
Communications and System Management Segment (CSMS) of the EOSDIS Core System (ECS).
It is based on key components of the conceptual architecture presented at the EOSDIS Progress
Review, held December 13-14, 1993 in Landover, Maryland.

The Communications and Systems Management Architecture focuses on those portions of the
system involved in the interconnection of users and service providers, transfer of information, and
system management of ECS components. It supports and interacts with, portions of the Science
Data Processing Segment (SDPS) and the Flight Operations Segment (FOS). Those segments are
referenced herein only to the extent to establish a context for architectural discussion.

The key objectives of this document are:

• to place CSMS within the context of ECS, the Flight Operations Segment (FOS) and
Science Data and Processing Segment (SDPS)

• to identify the relevant framework models for CSMS logical architectures

• to present the CSMS implementation architectures, refining to sets of services

• to identify and discuss relevant Policy issues affecting the CSMS architectures

• to identify and discuss Quality of Service issues, including performance and availability

• to identify and highlight the evolvable nature of the architecture

This document is intended to be used as a source of derivative material in furthering the system-
level design of the ECS, and CSMS in particular, for continuing system design efforts leading to
the System Design Review (SDR) in June 1994. As a result, support and update of this document
past SDR is not planned.

1.2 Organization

This paper is organized as follows:

• Section 1 presents the purpose of the document, its organization, and logistics concerning
its review, including scope and context and points of contact.

• Section 2 establishes the context of the Communications and Systems Management
Architecture, including its background and origins and a list of relevant resources.

• Section 3 presents the logical and implementation architectures for the Communications
Sub-Architecture

Working Paper 2 MR9401V2

• Section 4 presents the logical and implementation architectures for the Internetworking
Sub-Architecture

• Section 5 presents the logical and implementation architectures for the System Management
Sub-Architecture

1.3 Review and Approval

This document is an informal contract deliverable approved at the Office Manager level. It does not
require formal Government review or approval; however, it is submitted with the intent that review
and comments will be forthcoming.

This is the second release of the CSMS architecture working paper. It provides the necessary
background to develop an aggregation of CSMS services based on known object services and
available COTS infrastructural components, and describes an architectural direction. Phased-
development plans of the services is not discussed within this document in order to maintain
separation of design-related aspects of the system from the architecture. It should be noted that the
development of the reference architecture is proceeding in parallel with system design activities.
The architecture presented in this document, therefore, represents work in progress and is subject
to change.

This revision provides the background and architecture context for the program in support of the
baseline system architecture review. It will serve as contextual material for the System Design
Specification, DID 207, which will be issued in conjunction with the System Design Review.

Questions regarding technical information contained within this Paper should be addressed to the
following ECS and/or GSFC contacts:

• ECS Contact

Ed Lerner
CSMS Manager
(301) 925-0303
edle@eos.hitc.com

• GSFC Contact

John Gainsborough
CSMS Technical Manager
(301) 286-2153
johng@ulabsgi.gsfc.nasa.gov

Questions concerning distribution or control of this document should be addressed to:

Data Management Office
The ECS Project Office
Hughes Applied Information Systems, Inc.
1616A McCormick Dr.
Landover, MD 20785

Working Paper 3 MR9401V2

2. Background

2.1 Architecture Definition Process

The architecture process within this document builds on the architecture direction set following the
ECS System Requirements Review (SRR), held September 13-14, 1993 in Greenbelt, Maryland,
through to the ECS December Progress Review (DPR) held December 13-14, 1993 in Landover,
Maryland. An important concept introduced at the DPR was the creation of chronologically-ordered
conceptual, logical, and implementation architectures.

This paper documents the logical and implementation architectures for CSMS. Within this
document are several references to differing dimensions of architectural analysis. The architecture
analysis can be viewed as multidimensional, proceeding in parallel tracks. Figure 1 illustrates the
CSMS architectural dimensions of analysis.

Communications Internetworking System
Management

Object Models

Policy Models

Functional Models

Conceptual

Logical

Implementation

Figure 1. Dimensions of Architectural Analysis

The primary dimension of architectural analysis is chronologically-oriented, proceeding with time
into increasing levels of analysis toward integration to the system design phase. Key phases of this
architectural dimension of analysis include the conceptual, logical, and implementation
architectures. The conceptual architecture is based on the high-level system model presented at the

Working Paper 4 MR9401V2

December Progress Review (DPR). This architecture is discussed in the EOSDIS Core System
Science Information Architecture White Paper and is not repeated here. At the DPR, the drivers and
key architectural principles were presented, followed by a discussion of organizational and
functional descriptions of the ECS. The conceptual architecture presented at DPR succeeded in
defining the goals and objectives for the ECS architecture.

The logical architecture is the selection of reference model(s), that have the essential behavior and
attributes that the implementation architecture and system-level design should inherit to meet the
system objectives as laid out by the conceptual architecture. In essence, the logical architecture
defines the strategy of how the CSMS architecture will be further advanced. The implementation
architecture is the tactical level of architectural analysis, defining major services within each of the
logical architecture components.

The second dimension of architectural analysis is to effect concurrency within the analysis effort.
Parallelism in analysis is introduced by the early decomposition of the architecture into sub-
architectures. The logical architecture analysis is integrated with sub-architecture analysis work to
break CSMS into major logical components, or sub-architectures, that can be analyzed in parallel
with minimal functional overlap and interdependency to other sub-architectures, including SDPS
and FOS sub-architectures. For CSMS, the sub-architectures include the communications,
internetworking, and system management sub-architectures. Each sub-architecture section includes
a logical and implementation architecture discussion.

The third dimension of architectural analysis provides perspective models. These models are used
to help describe the logical and implementation architectures. The primary representation model is
the object model. The object model is an ongoing tool for analysis that is refined through multiple
iterations of generalization/specialization to fully inherit the goals/objectives/strategy for the CSMS-
ECS. A highly aggregated form of the object model is used to define services that are provided by
each CSMS sub-architecture for external use. The object model is performed using the OMT tool
and the GE-Rumbaugh notation. A simplified notation of the GE-Rumbaugh notation adopted by
OMT is used in the many figures of this document to illustrate system, segment, and sub-
architecture context and services.

The early beginnings of a second important perspective model is provided textually - the policy
model. The architecture is developed to be policy neutral, however, the policy model defines key
aspects of the CSMS architecture-driven design that will ultimately require policy decision for
implementation. Policy implications are discussed in appropriate places within this document for
each sub-architecture.

A third model, included within this document, are functional models and graphics. These
representations of the architecture are used to help illustrate alternative implementations, and where
required, to facilitate the behavioral aspects of collections of objects and services.

Additional models that allocate the object model to physical entities to aid in the analysis of system
performance studies are not defined within this document. This area of modeling will be
reexamined post-SDR as ECS draws deeper into the design stage.

Working Paper 5 MR9401V2

2.2 Related documents

This document focuses on the CSMS logical and implementation architectures, and the supporting
rationale, with minimal background discussion. It assumes familiarity with the concepts developed
in related project documents, including:

193-00646 ECS Reference Models, December 1993

193-00561 DCE Migration Study

193-00611 Science-based System Architecture Drivers for the ECS Project White
Paper, December, 1993

193-00136 Version 0 Data Migration and Translation Tool Analysis

193-00623 ECS Evolutionary Development White Paper, December, 1993

193-000626 GCDIS/UserDIS Study White Paper, January 1994

193-00632 DME Migration Study

FB9402V1 ECS Science Requirements Summary White Paper, February 1994

FB9401V1 ECS Science Information Architecture White Paper, February 1994

604/OP1 ECS Operations Concept (revision TBD)

207/SE1 SDS Outline and SDR Agenda (TBD)

2.3 ECS Context

The context diagram for ECS is shown in Figure 2. The ECS provides many services for both
internal and external users through a distributed processing architecture. The CSMS is shown
within the ECS context as providing communications, internetworking, and systems management
capabilities.

2.4 CSMS Context and Sub-Architecture Divisions

The CSMS context, within the ECS, is shown in Figure 3. Figure 4 illustrates the first-tier
decomposition of CSMS. The major sub-architectures of CSMS are identified in Figure 4 include
the communications, system management, and internetworking sub-architectures. The sub-
architectures were selected on the basis of the supporting logical architecture frameworks to be
presented. The sub-architectures provide minimal interdependencies to each other and other sub-
architectures of the FOS and SDPS.

Major FOS and SDPS sub-architecture behavioral and performance dependencies are directly with
the communications sub-architecture. The communications sub-architecture is the applications and
user access path to all ECS services.

Working Paper 6 MR9401V2

Provide L0
Provide Quick Look
Provide Data Avail
Process Flight Ops T&C

EDOS/ECOM
Provide Alg orithm
Provide Data Update
Provide Product QA
Review Test Product

SCF

Provide Status
Provide Collection

Instrument/
Satellite

Determine Strategy
Provide Directives
Coordinate Policy

ESDIS

Exchange Data
Product Request

V0 DAAC,
ADC,ODC, IP

Exchange Data
Provide Feedback
Provide Res. Results

Science User

Provide L0-L4 Prods
Provide Data Access
Execute Algorithms
Provide Calibration
Provide Data Avail
Provide Schedules
Provide Data Quality
Ingest Data + Alg.
Provide User I/F

Provide Comm.
Provide Internetwork
Provide Sys. Mgmt.

Provide
		Instru. Status
		S/C Status
		Acq. Plan + Sch
		Mission Hist Data
		Instru Hist Data
Process DAR

ECS

Figure 2. ECS Object Model Context

Determine Strategy
Provide Directives
Coordinate Policy

ESDIS
External
Systems

Provide
		File Xfer Service
		Mail
		Request Broker
		Directory
		Security
		RPC
		Remote Terminal
		Object Services
		Bulletin Board
		Common Utilities

Provide
		Transport
		Network
		DataLink
 Physical Xfer

Provide
		Fault Mgmt
		Config. Mgmt
		Accounting Mgmt.
		Performance Mgmt
		Security Mgmt.
		Reporting Mgmt.
		Admin. Profiles

CSMS
Provide L0-L4 Prods
Provide Data Access
Execute Algorithms
Provide Calibration
Provide Data Avail
Provide Schedules
Provide Data Quality
Ingest Data + Alg.
Provide User I/F

SDPSFOS
Provide
		Instru. Status
		S/C Status
		Acq. Plan + Sch
		Mission Hist Data
		Instru Hist Data
Process DAR

Exchange
			Authentication
			Science Data
			Accounting Data

Figure 3. CSMS Object Model Context

Working Paper 7 MR9401V2

Communications
Provide
		File Transfer Service
		Mail
		Request Broker
		Directory
		Security
		RPC
		Remote Terminal
		Object Services
		Bulletin Board
		Common Utilities

System Management

Provide
		Fault Mgmt
		Config. Mgmt
		Accounting Mgmt.
		Performance Mgmt
		Security Mgmt.
		Reporting Mgmt.
		Admin. Profiles

Provide
		Transport
		Network
		Data Link
		Physical Xfer

Internetworking

Figure 4. CSMS Sub-Architecture Decomposition

2.4.1 Communication Sub-Architecture

Primary services of the communications sub-architecture are depicted in Figure 5. From an open
systems interconnection-reference model (OSI-RM, or ISO 7498:1994, Open Systems
Interconnection) perspective, the communications sub-architecture is comprised of layers 5-7, the
session, presentation, and applications layers. Support in this sub-architecture area is provided for
peer-to-peer, advanced distributed, messaging, management, and event-handling communications
facilities. These services typically appear on communicating end-systems across an internetwork.
Additionally, services within OSI-RM layers 5-7 to support communicating entities are provided,
included directory, security, time, and other ancillary services. The services of the communications
sub-architecture are functionally dependent on the services of the internetworking sub-architecture.
Many of the common facilities may be jointly developed by CSMS with the other segments.

Working Paper 8 MR9401V2

Common Facilities

Object Services

Object Services
	Mission Critical

			Security*^
			Naming*^
			Event
	 I/F Repository
			Implementation Repository

Mission Essential
			LifecyclePersistence
			Relationships
			Data Interchange*
			Licensing
			Trading*
			Query*
			Properties

Object Services (Cont.)
Mission Essential (Cont.)
Transaction
Concurrency
Externalization
Change Management
Replication
Threads
Time
Archive
Backup/Restore
Startup
Installation/Activation
Operational Control

Common Facilities
Object Collections

			Object Instantiation
			Management*^
			Cataloging and Browsing
			Help Facilities
			Printing and Spooling
			Information Search and Retrieval
			Agents
			Object Interchange
			Clipboard
			Policy Management
			Distributed Object Manager
			Load Balancing
			File Access*^
			Electronic Mail^
			Telnet^

* Adapter Objects Likely
^ API Adapters Likely

Object Request Broker

Figure 5. Communications Services

2.4.2 Internetworking Sub-Architecture

Primary services of the interworking sub-architecture are depicted in Figure 6. From an OSI-RM
perspective, the internetworking sub-architecture is comprised of layers 1 through 4 - the physical,
data link, network, and transport layers. Support in this sub-architecture area provides alternative
transports between communicating end-stations, alternative networking methods between end
systems and intermediate systems, and alternative circuit, packet or cell-based LAN and WAN
distribution services. The internetworking architecture services are not functionally dependent on
any services outside of themselves.

Working Paper 9 MR9401V2

Transport Layer Service

Network Layer Service

Data Link Layer Service

Physical Layer Service

Figure 6. InternetworkingServices

2.4.3 System Management Sub-Architecture

Primary services of the system management sub-architecture are depicted in Figure 7. The system
management sub-architecture is primarily in the application domain, above the OSI-RM
application-layer services, as management applications classes. Management services and object
services support the management application classes. Managed object classes for networks and
protocol state machines are a part of the system management sub-architecture information model
(not shown), while protocol mechanisms for the transfer of system management information are
discussed as part of the communication sub-architecture. Like services within FOS and SDPS, the
system management sub-architecture services are functionally dependent on the services of both the
communications and internetworking sub-architectures.

Working Paper 10 MR9401V2

Object Services
	Mission Critical

	 Lifecycle
			Naming*^
			Event
			Persistence
			Security*^
			Relationships

 Mission Essential
 Transaction
 Concurrency
 Time

Management Services
			 MUI
		 	Management*^
 Maps/Collections
 Monitoring
 Discovery
 Agents
			 Policy-Driven Base
 Policy Mgmt
 Instance Mgmt.
 Scheduling Mgmt.
 Cataloging and Browsing
			 Customization

* Adapter Objects Likely
^ API Adapters Likely

Management App. Class
 Configuration Management
 Performance Management
 Accounting Management
 Software Management
 Fault Resolution Management
 Security Management
 Printer Management
 Backup and Restore

Object Request Broker

Management Application Classes

Management Services

Object Services

F C A P S

Figure 7. System ManagementServices

Working Paper 11 MR9401V2

3. Communications Sub-Architecture

3.1 Assessment of Needs/Drivers

In response to the SRR, many scientists have been visited through a series of field trips. As part of
that effort, the key technology drivers to satisfy the scientist expectations were assessed. The key
technology drivers for the communications infrastructure are very broad in scope, supporting a
maximum of flexibility for interoperability, transparency, and heterogeneity for distributed
processing, evolving toward collaborative processing. The list of the technology drivers and their
importance is summarized in Table 1.

The goal in striving to achieve these technology drivers is to support advanced heterogeneous
distributed processing, with support for interoperability and transparency. The architecture needs
to be built to provide extensibility to support these drivers, both for support to GCDIS/UserDIS,
and for evolutionary advances toward fully collaborative processing.

Support for most of the technology drivers is available today, although not all to the degree
required for a high-performance and high-capacity system like ECS. Each of the respective
technologies in the above list is being tracked by the ECS team - in many cases, we are actively
involved in the promotion of the activities that contribute to the technologies development.

The scientist visits and subsequent discussions have led to the identification of several specific
needs for the ECS communications sub-architecture. The communications sub-architecture must
address the following:

• how to support advances in infrastructure and interoperability layers

• how to support multiple protocols of similar function and support the evolution of
protocols

• how to accept new services into the system that are not developed in parallel with the client
code

• how clients can gain information about new services, and then access the service

• how to provide support for the mixing and matching of available services

• how to provide support for legacy system integration within ECS

• how to protect against unwanted Application Programming Interface (API) changes
throughout the ECS Lifecycle

3.2 Logical Architecture

3.2.1 Framework Approach

A major goal to achieving interoperability among open systems is to make applications
interoperable across a heterogeneous environment. For an application to be interoperable in a

Working Paper 12 MR9401V2

heterogeneous environment, it must have implementation-specific dependencies removed. Service
interfaces to client processes, done correctly, can protect applications from the specifics of network
protocols, network-based services, user interfaces, operating systems, and data stores.

Table 1. Importance of Technology Drivers
Technology Driver Importance

Synchronous Interprocessing Basic Distributed Processing Requirement

Asynchronous Messaging Provides Efficient Utilization of Client Resources

Static Invocation Another Basic Distributed Processing Requirement

Explicit Static Binding Enables Direct Client Access to Remote Services

Implicit Static Binding Enables Client Access to Services without A-Priori
Knowledge of Service Location

Directory Service Scalability Provides Graceful Growth of Directory Elements through
ECS Lifecycle

Naming Service Enables Extension/Abstraction of Directory Service for
Identification of Remote Objects

Security Service Inhibits Unwanted Intruders - Protects Resources

Object Technology Essential Enabler for Advanced Distributed and
Collaborative Processing

Time Synchronization Essential for correlation of events across sites

Multivendor Interoperability Provides Flexibility and Evolvability over ECS Lifecycle

O/S Transparency Enables Technology Migration to Advanced O/Ss

Event Processing Provides Efficient Distributed Processing of All Events and
Error Conditions

Concurrency Increases Utilization of System Resources

Internationalized Security Enables International Security Extensions

Multiple Language Support Provides Application Developer Flexibility and Support for
Legacy Code

Legacy Server Integration Enables Reuse of Existing Applications with Minimal
Transition Difficulty

Dynamic Invocation Enables Client Access to Services without A-Priori
Knowledge of the Service Existence and Service Access
Operations

Dynamic Load Balancing Provides Efficient Assignment of System Resources and
Improves Performance

Request Brokering Essential Enabler to Carry Out Distributed Processing
Operations with Minimal Client Burden

Server Export/Scaling Provides for scientist advertising of services

Real-Time Collaboration Enables Scientist to Scientist Direct Interaction

Trading Primary Client Interface for Service Negotiation (Import) and
Naming Access

Federation Transparency True Open Distributed Processing Hallmark - Enables
Large-Scale Interworking

Working Paper 13 MR9401V2

Figure 8 provides an introduction to the predominant classes of service interfaces for applications
invoking communications services. The first class are interfaces that give access to essential
transport services, including establishing, using, and closing communications sessions. These
APIs provide application access to the top layer of the OSI-RM layer 7 as well as access directly to
layer 4 transport services. Many peer-to-peer protocols fall into this class of interface.

The second class of interface hides the details of network connection establishment from the
applications. Remote Procedure Call (RPC) is a well-known example of this class of interface.
RPC are used extensively in distributed computing environments, such as OSF's DCE. RPC
interfaces are modeled after subroutine calls in procedural programming approaches. A call is made
to a remote process and arguments are passed. The RPC, with associated services, handles all
inter-communication session management. Although this class of interface provides transport
independence, the structural nature of RPC's make object communications difficult.

Applications

Object
COMM

RPC

Basic
COMM

Figure 8. API Maturation for Communication Services

The third class of interface hides the underlying transport, and supports object-oriented application
software message passing. This highly abstract interface provides transport independence and
support for advanced distributed and collaborative computing concepts that will be required to help
meet the technology drivers discussed in section 3.1.

The best way to protect against unwanted interface modifications during the ECS Lifecycle is to
select as high-level and abstract an interface as possible, then integrate the interface to the specific
underlying communication services, as required. This approach is followed in the communications
sub-architecture. At the same time, support for legacy services through classic communications
service interfaces is permitted.

3.2.2 Open Distributed Processing (ODP)

The technology drivers of section 3.1 require the selection of the ISO ODP framework for the
logical architecture of the ECS communications sub-architecture. The Descriptive Model (part 2) of
the ODP reference model (RM-ODP) aims to provide transparent sharing of services (and

Working Paper 14 MR9401V2

resources) over different implementation architectures, different networks, and different operating
systems. The objective of the Open Distributed Processing (ODP) reference model is to enable
distributed system components to interwork seamlessly, despite heterogeneity in equipment,
operating systems, networks, languages, database models, and management authorities. An ODP
system provides a set of mechanisms which mask underlying heterogeneity from users and
applications. The ODP mechanisms address a set of transparency properties which are fundamental
to seamless interworking. Currently, ODP is at the ISO committee draft level (CD 10746).

ODP utilizes object technology to meet its goals. Objects in ODP embody the ideas of modularity
and data abstraction that will be necessary to meet the technology drivers developed from scientist
interviews. The essential properties of service distribution - separation, isolation and autonomy are
captured by the utilization of objects. ODP is based on avoiding assumptions that would otherwise
inhibit a true distributed architecture. These assumptions to avoid include the assumptions of
central control, single global name space, global shared memory, global consistency, sequential
program execution, total failure, locality of interaction, fixed application locations, direct
client/server bindings, and system homogeneity.

ODP details five fundamental viewpoints for information system modeling. A viewpoint is an
abstraction mechanism which allows a perception of a system emphasizing a particular concern,
while ignoring other characteristics that are temporarily irrelevant. ODP recognizes that viewpoints
do not comprise a layered architecture. There is no inherent ordering among the viewpoints and
there is no implied methodological sequencing. Viewpoints are qualitatively different from one
another. The five viewpoints and examples of their use that are planned for application to the ECS-
CSMS design are summarized below:

• Enterprise Viewpoint:

Concerned with the social, managerial, financial, and legal policy issues which constrain
the human and machine roles that comprise a distributed system and its environment.

This includes basic requirements, policies, objectives, and user roles.

• Information Viewpoint:

Concentrates on information modeling, flow and structure, and information manipulation
constraints of the distributed information system.

This includes groupings, relationships, flows, and partitions.

• Computational Viewpoint:

Focuses on the structure of application components and the exchange of data and control
among them.

This includes service models and programming functions in the application domain. These
include the major models for FOS, SDPS, and the System Management application space.

• Engineering Viewpoint:

Concerns the mechanisms that provide distribution transparencies to application
components.

Working Paper 15 MR9401V2

These are the 'psuedo-objects' to the application domain, including protocols, and common
facilities and transparency services.

• Technology Viewpoint:

Focuses on constraints imposed by technology and the realized components from which the
distributed system is constructed.

This includes the actual products, devices, and circuits, etc. used to build the system.

The two major viewpoints of immediate concern to the CSMS architecture include engineering and
enterprise viewpoints. The engineering model can be described as classes of objects that
collaborate together to effect a communications 'channel' for intercommunication. The key object
classes include basic engineering objects, stub objects, binder objects, manager objects, nucleus
objects, supporting objects, and interceptor objects.

The RM-ODP transparency properties include access, location, migration, concurrency, federation,
liveness, resource, failure, and replication transparency properties. These properties can be
(loosely) thought of as types of the dominant engineering objects listed above. Further discussion
of the engineering model, and transparency aspects of the ODP engineering model, are provided in
Appendix A; detailed discussion in available in referenced documentation in the bibliography.

Service

Support

Objects

Liveness
Objects

User

Basic

Engineering

Object

Access and
Concurrenc

yObjects

Nucleus
Objects

Provider

Basic

Engineering

Object

Federation

Objects

User ProviderInterpreted
ODP Engineering Model

(p/o ISO CD 10746)

Access and
Concurrenc

yObjects

Nucleus
Objects

Liveness
Objects

Location,
Migration,
Resource,

Failure, and
Replication

Objects

Location,
Migration,
Resource,

Failure, and
Replication

Objects

Figure 9. ODP Channel Negotiation with Transparency Objects

Working Paper 16 MR9401V2

 As previously stated, ODP aims to provide transparent sharing of services (and resources) over
different implementation architectures, different networks, and different operating systems. To
share these services, service requestors need to be aware of potential providers of the required
services, and need to be capable of accessing the services. In a system such as ECS where user
and provider sites are expected to be changing and growing over time, applications must be able to
select appropriate servers to meet their needs at run time. This process is known as late binding and
is provided by a function called the trader within ODP. The framework is summarized below,
while the implementation architecture of section 3.3 develops the trader function within the OMG
object model.

Trader

Exporters
(Service Providers)

Importers
(Users)

Import
Requests
(service
request)

Import
Replies Export

(service offers)

Service Invocation

Service Replies

Figure 10. ODP Trader

Figure 10 illustrates the open distributed system trader concept to enable the linking of clients and
servers in a distributed system. The service invocation process occurs as follows:

• A trader accepts service offers from exporters (providers) of services when a server wishes
to advertise a service offer. A service offer contains the characteristics of a service that an
exporter is willing to provide. Service offers are stored by the trader in a centralized or
distributed database.

• A trader accepts a service request from importers (users) of services when a client requires
a service. A service request is an expression of service requirements made by an importer
when a service is needed.

• A trader searches its service offer database to match the importer's service request. And, if
required, a trader can select the most appropriate service offer (if one exists) that satisfies
the importer's service request. The matched list of service offers or the selected service
offer is returned to the importer.

• After a successful match, the client can interact directly with the matched service.

Working Paper 17 MR9401V2

The matching and selection of the appropriate service at run time by a trader allows client objects to
be configured into an open distributed system without prior knowledge of server objects that can
satisfy their requirement. Note that the same object can be an exporter of one service and an
importer of another service. In fact, an importer or an exporter can be another trader. An importer
and its corresponding exporter can be co-located, physically removed from one another, or
dynamically relocatable. The distribution transparency function of an open distributed system hides
the location differences.

Services are defined by ODP as functions provided by objects at computational interfaces. As
such, traders can be used to perform all kinds of service negotiations, from real-time trading to
large-scale trading. By defining service types and trader types to match the various service types,
negotiation by the trader for channel establishment between users and providers is enabled in
heterogeneous environments.

3.2.3 Distributed Object Management Systems

The computer industry has been moving toward the establishment of a common application
interface standard that can greatly simplify the development and integration of advanced distributed
applications. In such an environment, an intermediary, acting on behalf on the requesting client,
handles all activities associated with establishment of the entire communication channel between the
user/client and provider/server. Objects (clients)who know of a service's existence request services
from other objects by issuing a request for service to an intermediate object using only an object
reference and the service to be performed. If the service is not initially known by the client, then
the client request is actually a request for service, and the intermediary would provide that service
to the client, acting as a trader in fulfillment of a service import.

The distributed object management systems (DOMS) architecture provides all services required to
accept requests from clients, negotiate the service request based on available services and policy,
deliver the request to the correct object (if it exists), and return a response indicating the result or
outcome of the request. The client is unaware of the underlying complexity of handling the service
request, allowing maximum application modularity and interoperability. The DOMS may enlist the
participation of one or more other objects before completing the service request without the
requesting client knowing about it.

A DOMS consists of an arbitrary number of distributed (physical) nodes, and clients. Each node
supports one or more application programs, database systems, and objects. Together, the nodes
constitute the system's computing resources. DOMS clients request operations to be performed by
the resources. One (or more) distributed object managers act as intermediaries between clients and
resources. Distributed object managers make the system's computing resources appear as objects
(whether they are object oriented or not). They allow clients to make requests involving resources
that reside anywhere in the system. Clients do not need to know the location and implementation
details of the resources. Clients and resources connect to the distributed object manager through
software interfaces that translate requests and results passing through them to the forms required
by the various components.

The DOMS conceptual architecture is depicted in Figure 11. An example of the flow between
services that may conspire to fulfill a client request, based on a mix of static and dynamic

Working Paper 18 MR9401V2

invocations, is shown in Figure 12. Components of this example have been implemented by,
among others, MITRE DISCUS using Object Request Broker technology from the Object
Management Group (OMG). Regardless of the underlying service complexity in fulfilling the client
request, minimal interface to the DOMS is required by the client, with no knowledge of the
communications and internetworking environment.

Client Object

Request

System 1 System 2

Client
Interface

Object
Interface

One or more distributed object managers

Figure 11. DOM Architectural Concept

The scenario below is a very hypothetical and greatly simplified scenario where a client makes a
query for data. This scenario is an extreme case: it is usually the case that services are well-known,
with agreed sets of properties and values. Additionally, the implementation of such a scenario
within ECS would be toward the concrete and deterministric parts of the scenario first, with the
more 'visionary' parts over time as time and money permit. The scenario reflects the potentially
achievable state of distributed computing in the next 10 years. The services are actual OMG object
services that will be discussed in detail in section 3.3. In this scenario, the following actions might
occur:

1. The client initiates a query for certain instrument data. It is unknown by the client if the
data exists, or if it needs to be created. Information about the client's local environment
and user demographics (user class, context) may be passed with the query. The query
requests the data delivered in a specific format.

2. The DOM determines that request must first go to a trader (or service negotiator) service
to analyze how best to direct the query to an appropriate query service. In a smaller
system, context and local environment parameters might be implicitly assumed, negating
the need for a trader.

3. The query is passed to a trader service of type query. This trader might contain detailed
information about available query services that could understand the user demographics
(such as context of query), and local environment constraints (such as query language
and communication protocol support).

Working Paper 19 MR9401V2

4. The trader of type query does initial analysis of the query to determine the existence and
reference of a query service that could fulfill the client's request. A full service match is
made.

5. The service reference and the query are passed back to the DOM, or another instance of
the DOM.

6. The DOM directs the query to the appropriate query service.

7. The query is transferred to the query service.

8. The query service, appropriately selected for the user's demographics and local
environment constraints, performs an analysis of the query. As required, the query is
parsed, and additional accesses to the trader (or a local instance of it) are made to identify
sub-query service references. Assuming no parsing is required, the query service
determines (most likely through a naming service, not shown), the object reference of the
requested data. The query service additionally determines that the data request requires
the join of two existing data sets, but in a different data format than presently available.
Unfortunately, the existence of the required data interchange service is unknown.

9. The query instructions are returned to the DOM, or another instance of the DOM.

10. The DOM directs the query instructions to another trader, this one of type data
interchange.

11. The query instructions are sent on to the trader, type data interchange.

12. The trader examines its repositories to find a match for the requested data format. A
complete match is not made, only a partial match is made.

13. The trader, through an event service (not shown) alerts the client of the partial service
match.

14. The client elects to continue the request and receive the data in the available format.

15. The trader of type data interchange obtains the reference for the appropriate data
interchange service(s).

16. The retrieval and conversion instructions, with the service reference, are returned to the
DOM, or an alternative instance of the DOM.

17. The DOM directs the retrieval/conversion instructions to the data interchange service.

18. The instructions are transferred to the appropriate data interchange service.

19. The data interchange service retrieves the data (working through potentially archive,
persistence, and lifecycle services - not shown), combines, and performs a data
conversion of the results.

20a. The data, in its packaged form, is returned to the DOM.

20b. Alternatively, client local environment constraints could have the data flow direct to the
client using a preferred protocol mechanism.

21. (Optional) The DOM directs the data to the client.

Working Paper 20 MR9401V2

22. (Optional) The data result is returned to the client.

Distributed Object Manager
(multiple instances)

1

2

3

4

5

Trader; Type Query Query

6

7

8

9

Trader, Type
Data Interchange

10

11

12

13

Data Interchange14

15

16

17

18
19

20a

22

Client

21 20b

Figure 12. Example Service Flow Scenario using DOMS

Note in this scenario that any of the services may be moved very close to the client to improve
performance. Provisioning of the user demographics and local environment constraints (including
Quality of Service specifics to performance and availability) drive the implementation (physical
design) of the services, and provide a foundation for service negotiation in a heterogeneous
environment. The fundamental access to the services, using well defined interfaces, will remain
unchanged through variations in client demographic and environment constraints, and multiple
service implementations.

3.3 Implementation Architecture

3.3.1 Important Architectures

Early investigation into implementation of specific aspects of the ECS communications sub-
architecture included the examination and review of architecture and design details of several
systems, technologies, standards and consortia activities. Dominant activities have included a
review of X/Open framework activities, discussions with an X/Open fast-track member on
Federated Naming (XFN), OMG Technical Committee meeting attendance, MITRE discussions on
future OMG object services (Query, Data Interchange, and Trader), examination of NIIT Earth DS
and Ellery Open Systems, OSF DCE technical consultancy, Project Pilgram staff discussions, S2K
documentation review; and ISO review of ODP, Trader, and QoS-related documents. A summary

Working Paper 21 MR9401V2

of the analysis of primary systems and technologies applicable to the communication sub-
architecture are further provided in this section.

Table 2 details a mapping of the driving technologies identified in section 3.1 against primary
systems/technologies applicable to ECS. As can be seen from Table 2, the selection of OMG
CORBA technology (and OMG Object Services) has the greatest long-term potential to the ECS.
DCE with extensions holds good promise as an infrastructural foundation to get to OMG. A
summary of the early architecture analysis is provided below - further discussion of DCE and
OMG CORBA is deferred to the implementation architecture discussions of sections 3.3.3 through
3.3.5.

3.3.1.1 ECS Version 0 Prototype

The V0 prototype, and its potential reuse to the ECS, is discussed in the V0 Migration Study and is
not repeated here. The V0 prototype satisfies many of the initial technology drivers for ECS - and
many legacy services of V0 will be enveloped by ECS, especially within the internetworking sub-
architecture and sub-services of the communications sub-architecture. Significant enhancements to
V0 would be required, however, to support the advanced distributed computing infrastructure
services required to meet the science mandates for the communications sub-architecture.

3.3.1.2 Sequoia 2000

Sequoia 2000 (S2K) provides several advanced concepts of potential benefit to ECS. Concepts
borrowed for architectural work include:

• the goal for a smooth transition between directory to inventory search to visualization

• assigned bandwidth for isochronous communications in support of collaborative
processing

• potential use of a database as a naming server

Promising aspects of work involved with S2K includes in-depth analysis of the POSTGRES
database, real-time protocols (RTIP, RTTP), Hollywood work on real-time collaboration, SPIMS,
the Earth Scientist data language definitions, and the UCB work associated with OGIS (see
Appendix G). This work has potential to both the communications and internetworking sub-
architectures. Descriptions of the work are not presented in this paper - the reader is referred to sets
of available papers about S2K in the ECS library and via anonymous ftp with uc -berkeley.

Working Paper 22 MR9401V2

Table 2. Technology Driver Mapping to Primary Systems/Technologies

V0 DCE
NIIT
EDS

CORBAS2K DCE
w/Ext.

Synch. Interprocessing
Asynch. Messaging
Static Invocation
Explicit Static Binding
Implicit Static Binding
Directory Service/Scalability
Naming Service/Scalability
Security Service
Object Technology
Time Synchronization
Multivendor Interoperability
O/S Transparency
Event Processing/Maturity
Concurrency
Internationalized Security
Multiple Language Support
Legacy Server Integration
Dynamic Invocation
Dynamic Load Balancing
Request Brokering
Server Advertising/Scaling
Real Time Collaboration
Trading
Federation Transparency

√
√
√
√
?
P
P
P
?
?

√

√
√
√
√
F
√
P
√
√
√
P
√
F
F

√
√
√
√
√

F
√
P
√
√
√
P
√
F
P
√
√
√
√
P
P

√
√
√
√
√
?
P
?
P
?

?

?

√
P

P
√

√
√
√
√
√
√
P
√
P
√
√
√
P
√

√
√

P
P
P

√
√
√
√
√
√
F
F
F
F
F
F
F
√
F
F
F
√

√
F
F
?
?

√ = Compliance, P = Partial Compliance, F = Future Compliance, ? = Incomplete information

Technology
Drivers

3.3.1.3 NIIT Earth Data Systems

The NIIT Earth Data Systems application is based on DCE technology using Ellery Open Systems
product for legacy server integration and 'dynamic' invocation. The NIIT EDS shows the potential
of advanced distributed processing, but does not scale well to a system the size of ECS.
Additionally, the Ellery product is limited in operation to a UNIX paradigm and is not currently
based on advanced object technology. Although service 'discovery' is enabled via the Ellery
toolkit, the architecture is not truly dynamic in that the client must still understand the correct
interface characteristics of the service it is trying to invoke, creating a monolithic design of
client/server interaction. Still, the basic NIIT EDS architecture provides several insightful lessons
learned with regard to legacy server integration and dynamic invocation concepts.

3.3.1.4 OSF Distributed Computing Environment

The OSF Distributed Computing Environment (DCE) provides a solution to most of the key
technology drivers identified in section 3.1. The core DCE services include threads, remote
procedure call (RPC), directory service, security service, and time service. Extended DCE services
include distributed file service and diskless support service. DCE is based on three distributed
computing models: client/server, remote procedure call, and data sharing. The DCE architecture
has been implemented and is available through multiple vendors. It provides an interoperability
solution for transport and operating system transparency, and has high immediate benefit to the
ECS communications sub-architecture. More information on the DCE Core and Extended services,
and the distributed computing models can be found in Appendix B of this document.

Working Paper 23 MR9401V2

3.3.1.5 Project Pilgrim

Project Pilgram is a DCE-experience project out of the Department of Computer Science at
University of Massachusetts, Amherst. Early Project Pilgram work included a proof-of-concept
experiment of DCE technology. Results of this proof of concepts were very encouraging. Multi-
vendor cell integrations included Ultrix MIPS, OSF/1 Alpha AXP, HP-UX, AIX, Gradient
Windows/DOS i486 was performed successfully, proving the OSF concept of interoperability.
Lessons learned from Project Pilgram include the following:

1. Heterogeneous client/server pairings worked without major problems

2. RPC service time increases linearly with data transfer size (for simple arrays).

3. High throughput rates and network bandwidth utilization is possible.

4. Threads can reduce effective RPC service time.

Project Pilgram has other advanced applications of distributed processing built on DCE which have
potential to ECS. These include load balancing mechanisms, asynchronous invocation tools, mail
on DCE, and DCE to non-DCE interface experience. Many other COTS and GOTS applications
exist as well that can be added to extend DCE functionality, including OSF DME distributed
services.

Security
Service

Distributed Application

Distributed
File Service

Diskless
Support

Directory
Service

Distributed
Time Service

Distributed
File Service

Remote Procedure Call

Threads Service

Operating System

Network Transport

DCE
Extended
Services

DCE Core Services

Other Extensions/Additions
• Asynchronous and ORB Message Transfer
• Load Balancing & Generic Instantiation
• C++ and other code bindings & interpreters

• DCE Based on ANSA Predecessor to ODP (EEC Project ESPRIT)
• DCE-Based CORBA Implementations are predominant

Figure 13. DCE Conceptual Model

Working Paper 24 MR9401V2

3.3.1.6 Distributed Management Environment

DME was examined for the communications sub-architecture for its potential contributions to
distributed services, and the access methods to OMG object services within the DME Management
Framework. A discussion of the DME architecture is provided in Appendix G. Key DME
distributed services of potential value to an advanced distributed environment such as ECS include
software licensing, software distribution, and event notification services. The former two are
beneficial to the systems management sub-architecture, while the event notification service could
potentially provide an implementation of the OMG event service. The DME distributed services
will be incorporated within DCE as part of release 1.1. Further investigation into the DME
architecture has revealed that software licensing and distribution services may not be the X/Open
branded 'standard', and event services are not easily built into the OMG-accepted event service.
The software management issues are further pursued in the systems management sub-architecture
discussion. The DME event model will not suffice for an OMG event service due to fundamental
differerences in the OMG-accepted event model vice the DME approach.

DME Network Management Option includes the X/Open branded use of XMP. XMP is a interface
to both SNMP and CMIP/CMIS management protocol services, although the invoking application
must specify the underlying management protocol to access or collect information from the
managed objects.

The DME (Object) Management Framework, currently on hold within OSF, is closely related to
OMG's CORBA in terms of architecture, interfaces, object model , and object services. The
Minimum set of OMG object services needed to build distributed applications and services
includes:

• Lifecycle, in order to consistently manage creating, moving, copying and deleting objects

• Persistence, to provide storage for an object's private attributes, and to be able to support
objects whose lifetime is much longer than that of a single process

• Security, to simplify and automate the authorization of requests on an object

• Naming, to obtain an object reference, given in a readable format

• Events, to support alert communications between objects and administrators

• Synchronization, to support & maintain consistency across multiple, concurrent operations
on objects

• Associations and Relationships, to define a common foundation for higher level services
that describe complex object relationships, like network maps

• Time, to provide consistent view of time in a distributed system

Additional discussion of DME as it applies to the Systems Management sub-architecture can be
found in section 5.3 of this paper.

Working Paper 25 MR9401V2

3.3.1.7 OMG CORBA and Object Services

The open architecture of DCE provides an excellent infrastructural foundation in which to base
interoperable CORBA implementations, due to an existing multi-vendor interoperable transport
with integrated security features. Many implementations or planned implementations of CORBA on
DCE exist today as COTS (HP, Digital, IBM). OSF has recently submitted a specification to the
OMG request for specification (RFS) for interoperable ORBs using DCE as the underlying
middleware infrastructure. This submission is in competition with six other OMG submissions,
however, and will likely require change if it is selected as the ultimate base for interoperable
CORBA implementations. CORBA and OMG object services are further discussed in this
document as follows: an architecture overview of OMG is provided in section 3.3.2, with a
detailed discussion of OMG CORBA and Object Services as it applies to the implementation
architecture in section 3.3.3, and reference documents in the bibliography.

3.3.2 OMG Architecture Overview

3.3.2.1 Background

The Object Management Group (OMG) is an international organization of approximately 350
vendors,developers and users. The organization was founded in May 1989 and began operations
as a non-profit corporation in October 1989. The organization's charter includes the establishment
of specifications to provide a common framework for object-oriented application development.
Conformance to the specifications makes possible application development across heterogeneous
platforms and operating systems.

In September 1991 the OMG adopted a specification for an Object Request Broker (ORB). The
ORB specification defines the communications heart of an object-oriented software framework.
This key component enables objects to transparently make and receive requests over a network.

The central mission of OMG is to establish an architecture and set of specifications based on COTS
technology to enable distributed integrated applications. OMG's primary goals are the reuseability,
portability, and interoperability of object-based software components in distributed heterogeneous
environments.

3.3.2.2 Relationship to Other Activities and OMG/ODP Liason

The OMG is one of many consortia and standards development organizations (SDOs) involved in
object-based standards development. Figure 14 provides a object paradigm view of how each
group involved contributes. OMG has received a Category C liason (OMG document 93-8-7)
status with ODP. The agreement enables interaction and formal document exchange between
ISO/IEC JTC1 and OMG. The liason does not allow voting privileges, and is particularly focused
in liason coordination of the ODP trader.

The OMG has set up a Liason Subcommittee to work on these issues and develop liason with other
standards bodies. The other organizations the OMG Liason Subcommittee is involved include
ISO/IEC JTC1, ANSI X3, ECMA (TC33 - PCTE), Open Software Foundation, Network
Management Forum, North American PCTE Initiative, and X/Open Company. The ISO/IEC JTC1

Working Paper 26 MR9401V2

liason includes SC21/WG1 (Conformance), SC21/WG3 (IRDS), SC21/WG7 (ODP), and
SC24/WG6 (PREMO). ANSI X3 involvement is with H2 (SQL), H3 (Computer Graphics and
Image Processing), H4 (IRDS), H7 (Object Model), T3 (ODP), T6 (Fault Tolerance), J16 (C++),
and J2 (Smalltalk). The X/Open Company liasons include the CAD Framework Initiative,
Interactive Multimedia Association, (IMA), X/Consortium, PDES (US Product Data
Organization), ISO STEP (TC184/SC4), POSC, ODMG, SPIRIT, and PSWG.

Domain Specific

SW Infrastructure

Object

Paradigm

O p e n
Systems

Object
Models

Interchange
Formats

ASN.1, xdr

ANS1 X3H7 Object Models
PDES ExpressProcess

Model/ Workflow
Methodology

S E I
Bus. Process
ReengineeringGUI

X
Motif

Windows

Programming
Languages

AJPO Ada 9X

X3J16 C++

X3J13 Common Lisp

Smalltalk

Name Space
x . 5 0 0

Distribution
MCC EINet

X3T3 Open Distributed Processing

OMG Object Request Broker
OSF DCE

DARPA/Cornell ISIS

X2T5 OSI

Operating
Systems

MachPosix

Configuration
Management

ANSI
X3H6
CASE Tools

Database
Management

ANSI X3H2 SQL3

X3 OODB Task Group

DARPA Persistent Obj Base

DARPA Open OODB

Object Data Management Group

RepositoryANSI X3H3 IRDS

Frameworks
OMG

P C T E

Domain specific
Interchange formats/
Data reprsentations

CALS

PDES/STEP

IGES

EDIF

VHDL

CDIF

SGML/ODA

Figure 14. Object-Based SDO and Consortia Activities

3.3.2.3 High-Level OMG Architectural Framework

Through a series of Requests for Information (RFIs) and Request for Proposals (RFPs), OMG is
populating the Object Management Architecture (OMA) Reference Model with detailed
specifications for each component and service. Appendix C provides a detailed discussion of the
OMG architecture. Figure 15 illustrates the high-level architectural object management framework.

Working Paper 27 MR9401V2

Object Request Broker

Object Services

Application Objects Common Facilities

Figure 15. Object Management Architecture

An Object Request Broker (ORB) provides the communication backbone for transparently making
requests to and receiving responses from objects locally or remotely without the client needing to
be aware of the mechanisms used to communicate with, activate, or store the objects. Application
objects are proprietary or domain specific applications which are not general purpose or reusable.
Common facilities are general purpose but often domain-specific and typically provide direct
functionality to the end-user. For example services which specifically support the construction of
network management applications or word processing applications. Object Services are general
purpose and always domain independent and are necessary to construct any distributed application.

3.3.2.3.1 Object Request Broker

An ORB provides the basic mechanism for transparently making requests to and receiving
responses from objects located locally or remotely without the client needing to be aware of the
mechanisms used to represent, communicate with, and activate or store objects. As such, it forms
the foundation for building applications constructed from distributed objects and for
interoperability between applications. Figure 16 illustrates the concept of the object request broker.

The Object Request Broker (ORB) is a core set of object services that enables distributed
processing of objects. The core services within the ORB include an interface definition language
(IDL) compiler, an interface repository, an implementation repository, a static invocation interface,
and a dynamic invocation interface. Clients may access the ORB either statically or dynamically.
Figure 17 depicts the ORB and interface types.

Working Paper 28 MR9401V2

Database
Object

service
object

Legacy
Application
Object

Object
Request
Broker

Figure 16. ORB Concept

Client Object
Implementation

Dynamic
Invocation

 IDL
 Stubs

 ORB
Interface

 IDL
Skeleton

 Object
 Adapter

ORB Core

Interface identical for all ORB implementations

Multiple interfaces for Object Adapters

Interface different for each object type in stubs and skeletons

Upcall

Structure of CORBA Interfaces

ORB dependent interface

Figure 17. ORB Core and CORBA Interfaces

Working Paper 29 MR9401V2

The ORB provides distribution transparency, in that requests to and responses from an object are
made in the same way and have the same semantics whether the client and service provider are
located in the same address space, or on two machines on separate continents connected via a
wide-area network. In order to do this, the ORB provides access transparency (the source code to
perform invocations has the same syntax and semantics whether the target object is local or
remote), location transparency (interactions with remote objects behave in the same way regardless
of their location) and implementation transparency (interactions are independent of the
programming details and data representation of the objects concerned). Objects made available
through an ORB publish their interfaces using the Interface Definition Language (IDL) as defined
in the CORBA specification.

3.3.2.3.2 Object Services

Object Services are a collection of services (interfaces and objects) that support basic functions for
using and implementing objects. Operations provided by Object Services are expected to serve as
building blocks for OMG Common Facilities and Application Objects.

An ORB doesn't provide interoperability by itself. Semantic support is provided by Object
Services in the form of additional interfaces, protocols and policies. The services are general
purpose and necessary to construct any distributed application. Object Services are lower level than
Common Facilities and augment the functionality of the ORB. Further discussion of current
proposed object services are found in section 3.3.3.1.

3.3.2.3.3 Application Objects

The Applications Objects component of the OMA represents application objects performing specific
tasks for users. An application is often built from a large number of basic object types, with some
aspects specific to the application and others possibly from the set of Common Facilities.
Applications built on this approach provide improved productivity for the developer and expanded
functionality for the end user.

3.3.2.3.4 Common Facilities

The Common Facilities component provides a set of generic application functions that can be
configured to specific requirements. Standardization leads to uniformity in generic operations and
lets end users modify object configurations instead of configuring individual applications.

3.3.2.3.5 Profiles

The OMG Object Model defines a mechanism called profiles. Profiles are groups of components
that combine to serve as a useful set of extensions for particular application environment domain,
such as a particular language, or SQL3, or ISO GDMO. Profiles can be technology-based; for
example databases or programming languages. Profiles can also be application-based, for example
CAD or Finance. Vendors will build products that are compliant with profiles for particular
domains. Since components have to be compliant with Core features, compliance with a profile
means that a product will be compliant with the Core Object Model.

Working Paper 30 MR9401V2

3.3.2.3.5.1 Core

The OMG Object Model defines a core set of requirements that must be supported in any system
that complies with the Object Model standard. This set of required capabilities is called the Core.

The Core is the consensus of the least common denominator of atomic features that the OMG
membership feels must be supported by any systems that can call itself 'object technology'. These
features are identity, typing, operations, and subtyping/inheritance.

The Core serves as the basis for portability and interoperability of object systems across all
technologies and across implementations within technology domains. The Core includes a formal
model of types, operations and subtyping. The Object Model defines type = interface +
(unspecified) magic token, where magic tokens exist solely to allow objects with the same interface
to have different types.

3.3.2.3.5.2 Component

The Object Model also allows for extensions to the Core called components which are not required
to be supported by all systems. Components are additional atomic features that may be needed in
some application domains, but not in others. Examples are relationships, exception handling and
attributes.

3.3.2.3.5.3 Core + Components = Profiles

Profiles are composites of the Core, plus one or more Components that make up a useful object
model for a specific domain. These domains can be technology specific (DBMS, GUI,
programming language, etc.), or application-specific (Earth science, biology, etc.).

Therefore, a Core + Components = Profile. Only Profiles make up useful object models, and
compliance will be measured against a profile. Compliance to just the Core or individual
Components that don't make up a Profile is irrelevant.

3.3.2.3.6 Object Adapters

An object implementation can access the main functionality of the ORB through an object adapter.
The object adapter is the ORB component which provides object reference, activation, and state
related services to an object implementation. Services provided by the ORB through the Object
Adapter include:

• generation and interpretation of object references

• method invocation

• security of interactions

• object and implementation activation and deactivation

• mapping object references to implementations

• registration of implementations.

Working Paper 31 MR9401V2

It is not necessary for all Object Adapters to provide the same interface, but every instance of a
particular adapter must provide the same interface and service for all ORBs for which it is
implemented. Some implementations, for example, an object oriented database may have
thousands of objects and may not wish to go through an Object Adapter for every individual call.
Using a specialized Object Adapter the process may be specially tuned to allow the proper level of
performance. It is expected that there will be a few different Object Adapters with interfaces that are
appropriate for specific kinds of objects.

Figure 18 shows the structure and interactions of the Basic Object Adapter. The BOA initiates
activity by starting the appropriate server. The implementation initializes itself, then notifies the
BOA that it is prepared to handle requests. Between the time the program is started and it indicates
it is ready, the BOA will prevent any other requests from being delivered to the server. After that
point the BOA, through the skeletons, will make calls on the methods of the implementation.

Structure and Operation of Basic Object Adapter (BOA)

Object Implementation

1. Activate
Implementation

2.Register
Implementation

3.Activate
Object

4.Invoke
Method

5.Access
BOA services

Skeleton

Basic Object Adapter

ORB Core

Methods

Interface between BOA and ORB Core is private as is the interface
between the BOA and the skeleton

Figure 18. Basic Object Adapter (BOA)

3.3.2.4 OMG/ODP Planning

Several areas of OMG and ODP planning are in process to identify differences and encourage the
fast-track development of ODP object services. The major areas of planning include architectural
differences in the OMG and ODP architectural models, system management in ODP vs. OMG, and
planned CORBA 2.0 extensions to support ODP.

Working Paper 32 MR9401V2

3.3.2.4.1 Engineering and Computational Models

The lack of engineering (viewpoint) objects in OMG is a major architectural difference between
RM-ODP and OMG. The locality of objects available to clients at runtime on OMG-based systems
are transparent to the client. In RM-ODP this transparency is referred to as the computational
viewpoint of a distributed system.

A run-time environment requires the specification of the infrastructure that applications rely on.
This infrastructure includes how ORBs communicate, how stubs and adapters work together, or
the starting and stopping of processes. In RM-ODP this infrastructure is the engineering viewpoint
of a distributed system.

The engineering abstraction is different than the computational abstraction in that the distribution of
the objects are no longer transparent, although details concerning the differences between the actual
computer hardware remain transparent in the RM-ODP engineering viewpoint.

In RM-ODP, engineering objects are not confused with computational objects and both are
generally invisible to each other. The basic engineering object can be mapped to computational
object, but a computational object will often map to several basic engineering objects. CORBA 1.1
only recognizes computational objects. The OMG infrastructural objects such as Stubs, Object
Adapters, and ORBs are labeled pseudo-objects. The labeling of OMG infrastructure objects as
pseudo-objects constitutes the engineering objects in OMG.

3.3.2.4.2 System Management in ODP and OMG

The RM-ODP includes certain aspects of system or object management. The management issues
covered include object lifecycle, resource management and policy management. These management
functions can be used to build transparencies (e.g., federation, migration, etc.). The RM-ODP
includes a life cycle view of object management. The stages in the life of an object include:

• creation - resources are allocated for object template

• service offer - reference to interface provided to trader

• migration - to balance load, reduce latency

• checkpointing - for recovery after host failure

• passivation - when idle to disk, reactivate when invoked

• service offer withdrawel - from trader

• termination - release resources

OMG Object Services architecture provides these management functions in the following way:

• creation - through lifecycle service and factory objects

• service offer - inherent to trading service

• migration - inherent to lifecycle service

• checkpointing - inherent to transaction service

Working Paper 33 MR9401V2

• passivation - programmer defined

• service offer withdrawel - inherent to trader

• termination - inherent to lifecycle service

All RM-ODP objects include a management interface. Objects inherit these supporting mechanisms
to reduce programming burden. An object performs a management function by invoking an
operation on its management interface. Management objects are not presently envisioned in the
OMG framework. Groups involved in these issues include X/Open and the OSF MAN SIG - this
is further discussed in section 5.3.

3.3.2.4.3 CORBA 2.0 Extensions

OMG is considering including requirements concerning RM-ODP compliance for the second RFS
response of CORBA in the following areas:

• Inclusion of ISO ODP concepts of selective transparencies

• ISO ODP streams as an architectural foundation for multimedia interaction

• Inclusion of ISO ODP node structure and capsule object as generalized Object Adapters

• Inclusion of ISO ODP concepts for the federation of domains

• Inclusion of ISO ODP concepts of transactions

• Inclusion of ISO ODP concepts of replication transparency

• Inclusion of ISO ODP concepts for object clumping

• Inclusion of ISO ODP concepts of trading in support of dynamic reconfiguration

Note that for the potential inclusion of ISO ODP concepts of selective transparencies, users will
specify required transparencies in the IDL and the IDL compiler should include code for the
required transparencies in the generated stubs. An OMG concurrency transparency (computational
viewpoint) may be a quality of service requirement specified in an IDL. The run-time infrastructure
must instantiate the appropriate engineering object in the channel configuration to make this
possible.

The benefit of this approach would allow a user to pass their local environment constraints to the
ORB in order to provide service negotiation via the trader for enhanced interoperability in a
heterogeneous environment. As an example, a user might pass local environment protocol stack
constraints, so the service requested is made available on the correct underlying communication
mechanism.

3.3.2.5 DCE to OMG/ODP evolution concepts

OSF DCE provides an excellent interoperability solution for distributed computing, available today
on multiple platforms. The architecture, as it exists today, provides a high degree of transparency
support to the platform operating system, and transport levels. The primary evolution concept to
OMG involves the early identification and adoption of higher-level OMG-based service interfaces
that effectively 'hide' the DCE middleware, allowing a direct migration to CORBA and OMG

Working Paper 34 MR9401V2

object services. The OSF DCE is an excellent foundational platform on which to build
interoperable CORBA and OMG Object Services due to its common transport base for multi-
vendor platforms, and integrated security services.

OMG is carefully avoiding intensive prescriptive specifications, leaving to the vendor to decide
how best to implement the ORB and specific object services. As an example, Hewlett Packard and
IBM have co-developed a DOM architecture using DCE services in collaboration with OMG object
services. The IBM Distributed System Object Model (DSOM) and HP Distributed Object
Management Facility (DOMF) integrated with OSF DCE is shown in Figure 19. The environment
contains a CORBA-compliant Interface Repository, enterprise-wide location service, authentication
and authorization services, and a set of object services providing persistence, naming, properties,
events, and lifecycle management. Services provided by DCE are leveraged, where appropriate, in
implementing location and security services. Note that in the DSOM/DOMF architecture, shared
memory and sockets are available in addition to DCE RPC. This supports the optimization of
object message passing when objects are resident on the same machine or machines of like
architecture. The message passing mechanism is made transparent to the application developer and
client.

DCE
Shared

Memory Sockets

Transport

Intrepretive
Marshaling

Location
Service

Implementation
Repository

Authentication/
Authorization

P
er

si
st

en
ce

N
am

in
g

P
ro

p
er

ti
es

E
ve

n
ts

L
if

ec
yc

le
DSOM/DOMF RuntimeInterface

Repository

IDL
Compiler

Client Object Services Server

Figure 19. DSOM/DOMF Architecture

OSF has recently submitted to OMG a specification placing DCE as the core for CORBA 2.0
interoperability. The submission includes input from HP, DEC, NEC and HyperDesk. Although
IBM is not part of the submission, they may endorse the specification. A separate submission has
been placed by IBM using DSOM over an alternative transport infrastructure. HAIS has talked
with the OSF team to explore the potential of being I&T site for CORBA interoperability
development. The submission to OMG for CORBA interoperability is based on a gateway
approach, where messages from one ORB's protocol are translated to another ORB's protocol.
This already has been demonstrated by DEC with their OMG ORB to Microsoft OLE ORB
gateway. An alternative approach is to force conformance through the homogeneous adoption of a
neutral exchange format, where all ORBs intercommunicate using the same protocol. The benefit
of the first approach over the second is a recognition of the heterogeneous nature of distributed

Working Paper 35 MR9401V2

processing systems development in the industry. The disadvantage of the first approach over the
second is the N-squared potential explosion of gateways required for interoperability.

The selection of OMG-based service interfaces for initial program application design negates the
need at a later date to modify code using a DCE infrastructure. This fundamental architectural
concept was described in section 3.2.1. In order to protect (non-OO) legacy application
investments, special adapters to encapsulate legacy code may require development. Examples of
these adapters have already been developed through MITRE and could prove beneficial to ECS as
GOTS. Careful and deliberate selection of API sets that map to OMG Object Services, abstracting
the underlying DCE services will provide total protection to application developers and effect a
smooth transition to CORBA and OMG Object Services. This currently is an area of work with a
HAIS OO pilot project.

3.3.3 Communications Sub-Architecture Discussion

3.3.3.1 Heritage Services

The heritage services of the NASA ECS V0 prototype provide significant functionality in OSI-RM
layers 5-7 in the areas of electronic mail, file transfer, directory, and information search and
retrieval services. The architectural approach in the following discussion keeps the existing
services in mind in providing an adaptable framework with support for legacy software and service
integration with evolvability to an advanced communications infrastructure. The primary
integration strategy is by object encapsulation of the legacy service API. Specific heritage services
integration strategy is discussed in section 3.3.3.7 after the OMG architectures are fully explained.

3.3.3.2 OMG Object Services

3.3.3.2.1 Specification Approach

Object services are specified by a set of IDL interface definitions and a description of operation
behavior and request sequencing. These interfaces can either be used as types from which
application object subtypes can be derived, or services which can be requested by a client via an
ORB. In this way, the object services are specified without specific detail to the object
implementation. OMG object services can include the definition of multiple interfaces, potentially
forming an interface hierarchy. The CORBA IDL supports multiple inheritance, so application
objects and service provider objects that participate in or use a service only need to implement those
interfaces that are relevant to their role in the service. This additionally supports a non-monolithic
approach to service definition: services are amenable to partitioning into separate interfaces and
implementation by distinct technologies. The IDL in which the object services are defined can
transparently support both library-style and server-style implementations, with support for
heterogeneity and programming language independancy. Language maps bind the abstract IDL to a
specific language environment. In this way, it is possible to model interfaces in IDL even when the
interfaces have a non-object implementation. Language mappings from the IDL to the specific
implementation provide a uniform access to both procedural and object-oriented paradigms, further
supporting implementation independence of the specifications. The IDL additionally supports
interface subtyping. This allows flexibility for object services to start 'small', and incrementally be

Working Paper 36 MR9401V2

extended by adding operations, through interface subtyping, over time. This particular feature has
enormous benefit to the evolved introduction of trader services.

In summary, OMG specifications are defined by the interface, and not by the implementation.
OMG has acknowledged that there usually is no single 'best' implementation. Multiple
implementations are likely to be needed in a heterogeneous environment. Additionally, the object
services are general purpose and application domain independent. The object services defined in
this section are necessary to construct any distributed object application. The common facilities
(described in section 3.3.3.3) are more application-domain dependent services that are of specific
use to ECS application classes.

3.3.3.2.2 OMG Organization of Object Services

The Object Services Roadmap (OMG TC Document 92.8.5) summarizes OMG's vision for Object
Services. The scope and ordering for the phased completion of the Object Services are shown
graphically in Figure 20 below.

Lifecycle
Naming
Persistence
Event Notification

8/93

2/94

12/94

RFP1

RFP2

RFP3 RFP4

Security
Relationships
Transactions
Concurrency Control

Externalization
Data Interchange
Licensing
Trading

Query
Change Management
Properties

Target Dates for OMG adoption
(TC recommendation)

RFP Content

Additional services not shown on roadmap: Replication, Threads, Time,
Archive, Backup, Startup, Installation & Activation, and Operational Control

Figure 20. Object Services RFP Timetable

Working Paper 37 MR9401V2

The object service specifications will evolve over time. The service groupings were selected as sets
of services largely orthogonal to each other initially, with increasing interdependencies toward the
later stages of service solicitation. Section 3.3.3.2.3 identifies the primary set of services
recommended by OMG, ordered first by ECS mission critical, essential, and success, then within
this initial ordering, by approximate degree of maturation. Services toward the end of each section
may never actually get implemented, as the needs for these services will be modified as the higher
prioritized services are defined. As an example of this, the original OMG Architecture for object
services (August 92) recommended two system management services not found in DME or
X/Open literature dated late 1993.

Additional details of the object services can be found in the OMG Object Services Architecture
Document, the Joint Object Services Submission (JOSS) Documents, and the Common Object
Services Specification, Volume I (COSS). As of November 1993, specifications for event
notification, lifecycle, and naming services were approved by OMG. Work was in progress for the
persistence service, with two proposals being merged into one (resubmitted to OMG as of March
1, 1994). RFP's were out for relationships, externalization, synchronization (concurrency), and
time management services, and a working group was formed for the security service. Detailed
phasing of COTS available implementations and implementation strategy of the primary object
services by release will be discussed in version two of this document.

3.3.3.2.3 Object Services Classification

3.3.3.2.3.1 Mission Critical Services

3.3.3.2.3.1.1 CORBA

The OMG ORB, although not strictly an object service, falls into the mission critical category.
Non-interoperable implementations today, and interoperable implementations are beginning to
appear. All services are dependent on the ORB to implement object dispatch. Additionally, all
services are dependent on the IDL to express interface specifications, and the OMG Object Model,
to describe OMG objects, expressed in IDL. CORBA itself might have dependencies on the
interface and implementation repositories to store CORBA interface definitions and implementation
objects, respectively. CORBA is critical because it is the basis of which all other services will
reside.

3.3.3.2.3.1.2 Interface Repository

The interface repository is a component of CORBA that falls in the mission critical category. The
implementation of CORBA includes an implementation of the interface repository. The interface
repository supports the management of object interface definitions. Although not required for static
service invocations (using stubs and skeletons), the interface repository is a critical part of the ORB
required to support dynamically invoked services.

3.3.3.2.3.1.3 Implementation Repository

The implementation repository is a component of CORBA that falls in the mission critical category.
The implementation of CORBA includes an implementation of the implementation repository. The

Working Paper 38 MR9401V2

implementation repository supports the management of object implementations. The
implementation repository is a critical part of the ORB and required to support other services.

3.3.3.2.3.1.4 Naming Service

The Naming Service provides mappings between names and CORBA object references. It provides
the ability to bind a name to an object relative to a naming context. A naming context is an object
that contains a set of name bindings in which each name is unique. This service has been recently
defined in a submission to OMG as part of COSS.

Several interfaces are defined within the Naming Service. The NamingContext interface provides
access to operations to bind objects, resolve names, unbind objects, create naming contexts, delete
naming contexts, and listing a naming context. The BindingIterator interface allows a client to
iterate through the bindings using operations that either next binding, or returns at most the
requested number of bindings. A destroy operation on the iterator is included. Two additional
interfaces are specified which assist in the creation and maintenance of names library. The names
library hides the representation of names from client code, providing efficient creation,
manipulation, and transmission of names within application code.

Implementations of the Naming Service can be potentially done by an abstraction of the DCE cell
directory service, or some relational database. Additionally, work on Federated Naming within
X/Open (XFN) should provide a canonical interface to federated naming service implementations,
including DNS and X.500 directories.

3.3.3.2.3.1.5 Event Service

The Event Service allows objects to dynamically register or unregister interest in receiving
notification when a specific event occurs. Asynchronous events, event 'fan-in', notification 'fan-
out', and reliable event delivery (with appropriate event channel implementations) are supported.
The Event Service specification has recently been approved and published by OMG as part of
COSS. Implementations of event services exist that may potentially be abstracted into the OMG
Event service include COSS vendor implementations, and Project Pilgram work. Event services
operate under either a push or a pull model; key interfaces proposed as part of the Event Service
includes the PushConsumer, PushSupplier, PullConsumer, and PullSupplier interfaces.
EventChannel, ConsumerAdmin, and SupplierAdmin interfaces support administration of the event
service.

The Event Service decouples the communication between objects. The Event Service, illustrated in
Figure 21, defines two roles for objects: the supplier role and the consumer role. Suppliers
produce event data and consumers process event data.

Working Paper 39 MR9401V2

Event Channel
Supplier Consumer

PushSupplier
PushSupplier

PushConsumer PushConsumer

Event Service

NotificationService

Category

BulletinBoard
Dynamic Printer
Properties

Notification
Groups

is subscribed to by

Software
Updates

Death Exhuast
Resource

Out of
Bounds

Timed
Out

System
Exceptions

Exceptions Others..

Figure 21. Event Service

There are two basic models for communicating event data: the push model and the pull model. In
the push model the supplier initiates the transfer of data to consumers. In the pull model consumers
initiate transfer by requesting data from suppliers.

An event channel is an intervening object that allows many to many associations between suppliers
and consumers. The event channel also facilitates asynchronous communication. An event channel
is both a supplier and a consumer of events.

3.3.3.2.3.1.6 Security Service

The Security service provides access control, encryption, and audit control for objects and
interfaces. The DCE security services are an excellent implementation example of the aim of the
OMG security service. The Generic Security Standard (GSS) API, when implemented with DCE
as part of release 1.1, will provide internationalized security services using a choice of private and
public-key encryption.

To provide security to a typical service request in an OMG environment the additional security
features must be included. Figure 22 shows where security features are called by object
components in a service request.

Working Paper 40 MR9401V2

secure
rpcs

secure
rpcs

Client ORB ORB
Object
Implementation

Security Services

authentication
service

privilege
attribute
service

key
distribution

service

inter
domain
service

audit authorization

security
mech

security
mech

Object
Adapter

Figure 22. Security Service in a Typical Object Request

A request begins when a user authenticates himself/herself. User authentication is done by calling
an authentication service. A privilege attribute service can also called to determine a user's rights.
Authentication and privilege selection sets up a user's credentials.

The user calls a client which can invoke an object request. A secure association between the server
and client must be established. The request and the user/client's credentials from logon must be
securely transmitted to the correct object. At the client, the security interface (GSS-API style) is
called to initiate the security context for the request and is supplied a security token. At the server
the security interface is called to accept and check the token. Neither the client or the server
understand the token. The token includes the user/client's credentials, in the form of a Privilege
Attribute Certificate (PAC) and also information about encryption keys used to protect the dialog.
The client and server having established mutual trust may now transmit protected data. The
transmitted data may be protected using dialogue keys. The ORB/secure rpc calls security
interfaces to perform this encryption.

When the request reaches the server system, an access control check is made to see if the the user
can use the requested method. The Object Adapter or ORB or object implementation may perform
this check. The check uses the privilege attributes of the client's credentials and the access control
attributes for the server's method.

The method invocation can be audited. A standard interface for auditing should be used. The object
implementation may now be a client to another service on the system. The implementation may do
this using the user's credentials or its own.

Working Paper 41 MR9401V2

3.3.3.2.3.2 Mission Essential Services

3.3.3.2.3.2.1 Lifecycle Service

The Lifecycle Service provides operations for managing object creation, deletion, copy and
equivalence. Because CORBA-based environments support distributed objects, lifecycle services
define services and conventions that allow clients to perform lifecycle operations on objects in
different locations. The client's model of creation is defined in terms of factory objects, which are
objects to create other objects. This service is approved and published by OMG as part of COSS.

Three interfaces are recommended for this service in COSS: the LifeCycleObject, FactoryFinder,
and GenericFactory interfaces. The LifeCycleObject interface defines operations to delete an object,
to move an object, and to copy an object. The FactoryFinder interface supports an operation,
which returns a sequence of factories. The GenericFactory interface defines a generic creation
operation, allowing for the definition of standard creation services.

3.3.3.2.3.2.2 Persistence Service

The Persistence Service provides persistence of an object independent of both the lifetime of the
client that accesses the object and of the implementation that realizes the object's methods.
Persistent objects are placed in a persistent store such as a file system, database, or repository. It
can be used within ECS to assist in the storage of objects.

Persistence Service Architecture

The Persistence Service is an open architecture. It supports a variety of storage services. It is
lightweight, simple, powerful, robust, and integratable. Some implementations can be used
without using all of its parts. It allows access to non-object storage including relational databases,
files systems etc.

A persistent object is an object that exports its persistence behavior. The object supports both a
persistence interface as well as a functional interface. For example, a spreadsheet supports its
functional interface as well as a persistent interface. There are different ways to create a persistent
object. A class can generate a PID. These PIDs cannot change. A PID may be generated by a
database when creating object-PID binding. These PIDs might not be changeable. A document
might create a PO that allows PID to change during objects' lifetime. Persistent objects are quite
flexible. A user can:

• move an object's persistent state to a new DataStore;

• copy or backup an object's persistent state;

• bring an object's internal state back to where it was (restore)

• prevent changes in an object's internal state from propagating to its persistent-state

• get an object's PIDString and give it to someone to

• share its persistent state without sharing object

Working Paper 42 MR9401V2

The Persistence service also defines persistent object (po). These objects do not support PO
interface. These objects are provided clients do not need extensive control of persistence.

A Persistence Identifier (PID) is a way of specifying a unit of persistent state. The purpose of a
PID is to encapsulate the location of object's persistent state. The PID is the only client visibility of
where persistent state is stored and the Datastore interface used to access it. The PID supports
sharing of an objects persistent state. For example, if two users both work on same spreadsheet,
one might like Lotus 123 and the other Excel. If the one user gives the PID the other user can
create the object and use the data in their preferred format.

A Protocol is a means of interaction between an object and the persistence mechanism. A Protocol
specifies the way to get persistent data in and out of an objects. The actual data transfer details
depend on Protocol. Different Protocols are used to support:

• range of data sizes (byte to megabytes/object)

• range of access patterns (all, partial, query)

• range of frequencies (startup/shutdown, incremental updates)

• range of models (single-level store, upcall/downcall)

The Persistent Object Manager connects things together, it interprets PIDs and supports plug-and-
play of different implementations. A (POM) provides a uniform interface for the implementation of
an object's persistence. Single-level-store native objects do not need the POM and can access the
PDS directly. The POM routes persistence operations to correct PDS by using protocol +
datastore_type to route to a PDS.

PID

Persitent
Identifier

Lotus Protocol

Persistent
Object2
(Excel
spreadsheet)

Persitent Data
Service2 (PDS)

Persistent Object
Manager (POM)

Excel Protocol

Persitent Data
Service3 (PDS)

DB2 ObjectStore

Persitent Data
Service1 (PDS)

FS

Persistent
Object1
(Lotus 123
spreadsheet)

Working Paper 43 MR9401V2

The Persistent Data Service (PDS) is an interface class that supports combinations of Protocol (gets
data in/out of object) and datastore_type (gets data in/out of Datastore). The PDS must:

• at least support the operations used by POM

• interact correctly with whatever objects required by the specific protocols it supports

• interact correctly with the specific Datastore it supports

A Datastore is the underlying storage mechanism for persistent state. It may or may not be
exposed. Direct access between the persistent object and the Datastore is possible, if supported.
Examples include, file system, standard relational database or object oriented database.

3.3.3.2.3.2.3 Relationship Service

The Relationship Service provides for creating, deleting, navigating, and managing relationships
between objects. Relationships must support modeling object associations and semantics.

3.3.3.2.3.2.4 Transaction Service

The Transaction Service supports atomic execution of one or more operations, providing the ACID
property set of transaction processing systems. The X/Open XTP work as developed by Transarc
is a good implementation example of this service. This implementation is available over DCE, but a
more robust implementation mapped directly to the OMG IDL is required. SQL3 on RDA is
another implementation example that is potentially mappable directly to OMG IDL through profile
extensions.

3.3.3.2.3.2.5 Concurrency Service

The Concurrency Service defines how an object mediates simultaneous access by one or more
clients such that it and objects it accesses remain consistent and coherent. This service differs from
the Threads Service in that threads are for short-term synchronization primitives used to implement
concurrency control not limited to transactions. Concurrency control is for objects accessed within
concurrently executing transactions. This includes providing operations to mediate concurrent
operations, distinguishing between various granularities of concurrency control, and resolving
deadlocks. Transaction processing could become a requirement for sensitive transfer and
replication of information, including accounting data, security and directory information.

3.3.3.2.3.2.6 Data Interchange Service

The Data Interchange Service enables objects to exchange some or all of their associated state. It is
used for bulk data transfer of domain-specific object representations. MITRE has an interesting
implementation of Data Interchange on the DISCUS prototype. It is MITRE's intent to place a
submission to OMG. ODMG is also doing work in this area (see Appendix J for work with data
and database technology relevant to CORBA).

Working Paper 44 MR9401V2

3.3.3.2.3.2.7 Licensing Service

The Licensing Service controls and manages remuneration of suppliers for object services.
Licensing schemes might range from perpetual floating licenses to renewable licenses to metered
usage, and may vary over the life of the licensed product. The licensing scheme may additionally
incorporate the value of the information being accessed and establish related charging schemes
between users and suppliers of the information objects. DME Distributed Services has a HP-based
licensing services that fulfills most of the goals of the OMG service. It may be possible to use this
for the service implementation.

3.3.3.2.3.2.8 Trading Service

The Trader Service enables the linking of clients and servers in a distributed system. This service is
the matchmaker between the client and the service for objects. A detailed discussion of the trading
concept of service import and exports, and trading extended for federation, is provided in section
3.3.5.

3.3.3.2.3.2.9 Query Service

The Query Service supports operations on sets and collections of objects which may result in sets
or collections of objects. Queries are operations on sets or collections of instances that have a
predicate-based, declarative specification, and that may result in sets or collections of objects. The
emphasis in this service is on fine-grained objects. Appendix J details some work in this area,
including MITRE, ODMG, and OGIS.

3.3.3.2.3.2.10 Properties Service

The Property Service allows objects which inherit its interface to associate useful information
within its' state, for example, a date or title. The recent Naming Service submission has a names
library operation that may delete the need for this service.

3.3.3.2.3.2.11 Externalization Service

The Externalization Service provides functions for the transformation of an object into a form
suitable for storage on an external media or for transfer between systems.

3.3.3.2.3.2.12 Change Management Service

The Change Management Service supports the identification and consistent evolution of objects
including version and configuration management. Change management is used to maintain
efficiently the evolution history and composition of complex systems. There are legal, accounting,
or accountability requirements that specific Change Management systems must satisfy. There are
many related standards and references on this service in work.

3.3.3.2.3.2.13 Replication Service

The Replication Service provides for the explicit replication of objects in a distributed environment
and for the management of consistency of replicated copies. Operations of the replication service

Working Paper 45 MR9401V2

include a consistency checker of all replicas, a creation for replicas, updating of changes to
replicas, destruction of replicas, and the merging of replicas. This service appears to have a high
degree of overlap with the recently submitted lifecycle service capability to perform lifecycle
services on graphs of objects.

3.3.3.2.3.2.14 Threads Service

The Threads Service gives programmers the ability to create and manipulate threads. Included are
threads management, scheduling priorities of threads, policy priorities of threads, and
communications capabilities. DCE Threads are a good example of an implementation of the threads
service. Being just above the operating system, the threads service is the only OMG service with
no dependency on any other object service.

3.3.3.2.3.2.15 Time Service

The Time Service provides a mechanism for synchronizing clocks on multiple machines, and
provide a way to periodically synchronize the clocks. DCE Time, using UTC, is an operating
implementation of this service.

3.3.3.2.3.2.16 Archive Service

The Archive Service supports the mapping between active and backup object stores. Objects are
copied from an active/persistent store to a backup store and retrieved from the backup store to the
active/persistent store.

3.3.3.2.3.2.17 Backup/Restore Service

The Backup/Restore service supports backup and recovery of objects. The service restores the
environment to a prior state, usually by making a copy of the environment after significant input or
reorganization has occurred. Incremental backup may be used; a copy is then used to recover the
system after failure.

3.3.3.2.3.2.18 Startup Service

The Startup Service supports bootstrapping and termination of object services.

3.3.3.2.3.2.19 Installation and Activation Service

The Installation and Activation Service provides mechanisms for distributing, activating,
deactivating and relocating managed objects. Managed objects refer to clients of the system
management services, which may be application objects, common facilities objects, or other object
services. The operations of this service may be transferred to object lifecycle and security services.

3.3.3.2.3.2.20 Operational Control Service

The Operational Control Service provides the mechanisms for controlling the dynamic behavior of
managed objects. Managed objects are clients of the system management services.

Working Paper 46 MR9401V2

Note: This service, and the installation and activation service, were originally specified using the
ISO system management functions and GDMO as reference standards. Since then
reconciliation between GDMO and OMG object models, and between ISO SMFs and OMG
Object Services has been in work. Recent CORBA-compliant system management
architectures (DME, X/Open) do not list the installation and activation service or the
operational control service as service dependencies. The definition of these services,
available in the documentation, would suggest a non-orthogonal mapping of these two
services to other, higher prioritized services within the OMG object services architecture.

3.3.3.2.3.3 Mission Success Services

The object services are seen to be necessary for any distributed object application. As such, all are
categorized as either mission critical or mission essential.

3.3.3.3 Common Facilities

The common facilities are built using the object services defined in section 3.3.3.2, but potentially
include support to the legacy services mentioned briefly in section 3.3.3.1. This section provides
examples of how the object services might be integrated into an application environment. The
communications sub-architecture services presented below are evolving and will continue to be
refined toward SDR. DME developed a term called adapter object (NOT to be confused with object
adapter), that basically provides the encapsulation of a procedural interface. This term, which is
called 'adapter' in this paper to minimize confusion, would be an implementation of an object that
is built around the particular legacy service. This provides support for legacy applications, and an
integration of the legacy environment into an ODP logical framework. An alternative approach is
to create a subroutine library interface of an OO implementation to the legacy service. The legacy
services relevent to peer-to-peer and distributed processing, although not directly discussed in this
section, will remain essentially intact for ECS usage. These services are additional services to be
discussed within the SDS documentation.

The examples described in sections 3.3.3.3.1 through 3.3.3.3.4 illustrate some of the flexibility
introduced with OO development over the OMG object services. Specific OMG work in this area
is currently in progress. More information of the direction of OMG-defined common facilities
(which would not include all ECS-specific domain services, such as legacy services), is provided
in section 3.3.3.3.5.

3.3.3.3.1 File Transfer Service

The file transfer service shown in Figure 23 is an example of a multi-object service that can be
provided by a trader on a Quality of Service basis. Legacy methods of file transfer including ftp
and ftam may be encapsulated into objects. A client that is not particular may receive the entire
FileService and allow the user to select the type of service he/she interested in.

Working Paper 47 MR9401V2

FileDirectory Denotes
Inheritance

Naming
Service

Persistence
Service

for binding names
to objects

for storing
objects

File Transfer
(ftp)

ORB

FTPWrapper

File
Service

Trader

ORB

ORB

Trader

FTAMWrapper

FileDirIterator

Figure 23. File Transfer Service

Additional analysis is ongoing to investigate specialized object adapters that would improve
performance response with strict QoS constraints. The service architecture will continue to
decouple low vs high tolerance components of latency. Also, the potential integration of DCE
distributed file sharing, and the use of data interchange and query services to build an integrated
information search and retrieval service (beyond MOSAIC) can being considered using Figure 23
as a base.

3.3.3.3.2 Electronic Mail
Naming
Service

Persistence
Service

for binding names
to objects

for storing
objects

System User
Directory

Mail
Server

MailFolder

Distribution
List

Mailbox
refers to

Notification
Service

exported to

Trader

Figure 24. Mail Service

Working Paper 48 MR9401V2

The mail server of Figure 24 is an example of a client and an implementation of different services.
The main object in the mail service is the Mailbox object. The Mailbox object would conceptually
utilize the bulletin board features of a notification service. A Mailfolder object would augment the
facilities of a Mailbox by allowing the messages to be retrieved by name. The Mailfolder object
might use services from the Mailbox, Naming and Persistence objects. A DistributionList object
would allow a user to save the names and addresses of other users that he/she frequently broadcast
messages to. The DistributionList object would conceptually utilize the services of a system user
name directory service. The Mail Service could also register its services in part of the system name
space by exporting a part of its services with a trader.

The implementation of this is largely available today, using X.400, and SMTP.

3.3.3.3.3 Extensions of Directory/Naming Service

Naming
Service

for binding names
to objects

Printer Directory Service

Root

CSMS SDPS FOS

Printers

Dot Matrix Laser

Type = DotM
Id = “D3”
Loc=“3rd”

Type = DotM
Id = “D4”
Loc=“4tf”

Type = Lasr
Id = “L3”
Loc=“3rd”

Type = Lasr
Id = “L4”
Loc=“4th”

submits

Naming
Context

Binding

Binding
Iterator

/CSMS/Printer/Lasers/PrinterName

receives

PrinterObject

Figure 25. Printer Directory Service

A name binding is an association between a name and an object. A name binding is always defined
relative to a naming context. A naming context is an object that contains a set of name bindings in
which each name is unique. Different names can be bound to an object in the same or different
contexts at the same time.

To resolve a name is to determine the object associated with the name in a given context. To bind a
name is to create a name binding in a given context. A name is always resolved relative to a
context.

Working Paper 49 MR9401V2

Binding contexts in other contexts create a naming graph - a directed graph with nodes and labeled
edges where the nodes are contexts. A compound name is a sequence of names that defines a path
in the naming graph to navigate the resolution process. Figure 25 shows an example of a naming
graph for a printing directory service.

3.3.3.3.4 Notification Service

Categories in a Notification Service would allow application defined groupings of messages about
particular areas or resources within a system, such as printer server dynamic property updates.
Categories are derived from Supplier objects.

Notification Group objects, derived from the Event Channel objects, would receive notices, map to
a particular Category, and provide notifications to registered consumers.

BulletinBoards are examples of implementations of Consumer objects. A bulletin board object
would register (subscribe) with a particular Notification Group to keep abreast of events in
decoupled asynchronous fashion.

EventService

NotificationService

NotificationGroup

Trader

ExportPolicyController (pull consumer)

Client

3rd floor
printers
(pull
suppliers)

queue length
update

Figure 26. Example of Dynamic Property Notification

Figure 26 shows an example of an implementation of load balancing by an ExportPolicyController
using dynamic properties and a Notification Service. After registering with a dynamic printer
property notification group as a pull consumer, the client would receive updates on printer queue
lengths whenever it requested them. The ExportPolicyController could act as a load balancing
agent and recommend the printer that has the shortest queue to the Trader. The Trader could use
this information and any selection policy (criteria) information supplied by the client to select an
optimal supplier for the client.

Working Paper 50 MR9401V2

3.3.3.3.5 Common Facilities - Summary of Direction

The definition of the Common Facilities for ECS is evolving, embracing technical elements of the
user interface, application development, information management, and system management. The
ECS project will have many areas where these logical groups of objects will be required. Further
analysis is required leading to SDR. At this time, the following are a short list of common facility
domains considered pertinent to the ECS project:

• Object Collections

• Object Instantiation Management

• Cataloging and Browsing

• Help Facilities

• Printing and Spooling

• Object Query (Information Search and Retrieval)

• Agents

• Object Interchange

• Clipboard

• Policy Management

• Distributed Object Manager

• Load Balancing

In the near future vendors will offer many varieties of these object collections. All but the last two
common facility class listed above (distributed object manager, and load balancing) are areas of
common facility development expected to be forthcoming through industry and available as COTS
to the ECS project within the next two years. The Component Integration Laboratories (CIL) is an
example of an industry-wide association working to adopt and support technologies for the
effective integration of software components that provide a COTS base to some of the common
facilities. At present, CIL is supporting four technologies:

• OPENDOC, a compound document API

• BENTO, a portable object storage API designed for compound documents

• Open Scripting Architecture (OSA), an automation and scripting API, and

• System Object Model (SOM), an object-oriented, dynamic linking mechanism

These mechanisms will be supported on Windows, Macintosh, OS/2, and UNIX platforms. As
these and other organizations offer technology, HAIS will continue COTS vendor negotiations and
early prototyping ECS project integration.

Policy management and agents as they apply to distributed systems management will most likely be
classified as a management service for system management application domains, which is further
discussed in section 5.3.

Working Paper 51 MR9401V2

3.3.3.4 Application Objects

There are no application objects anticipated for the communications sub-architecture. Recall that
application objects are proprietary or domain specific applications which are not general purpose or
reusable. It is probable that application objects may be built in other parts of ECS from basic object
classes, with some aspects specific to the application and from the set of Common Facilities.
Applications built on this approach provide improved productivity for the developer and expanded
functionality for the end-user. The objects that are shared between applications fall into the
common facilities, either developed as part of the communications design, or SDPS design. Some
preliminary examples of these common facilities were described in section 3.3.3.2 and are subject
to ongoing analysis.

3.3.3.5 Profiles

Recall that profiles are groups of components that combine to serve as a useful set of extensions
for particular domains. Appendix J details alternative databases and query languages that may
require profile development by their vendors. Beyond databases, ECS will require profiles for
alternative programming languages. Profiles for C and C++ are defined: interest in Fortran, Ada
and Smalltalk has been expressed. A profile mapping of DCE idl to CORBA IDL is in progress.
Specific application profiles may be required to support advanced information search and retrieval
services defined within SDPS, such as Z39.50. These areas will require further analysis. The vast
majority of industry and government are readily adopting the OMG concept of a Core +
Component = Profile, so finding implementors of the Profiles should not be difficult.

3.3.3.6 Object Adapters

Recall the object adapter is the ORB component providing object reference, activation, and state-
related services to an object implementation. Some implementations with thousands of objects may
require an object adapter specially tuned to allow the proper level of performance. It is anticipated
object adapters will be required for the following key interfaces:

• Management interfaces

• Naming and Location interfaces

• Database Query and Data Interchange interfaces

• Trader interfaces

• High performance file access sites

Since it is expected that there will be a few different Object Adapters with interfaces that are
appropriate for specific kinds of objects, time will tell if these are COTS to ECS or require
specialized development.

3.3.3.7 Adapters to Legacy Services

Adapters, to make legacy services appear as objects will be required for some OO (and OMG)-
based applications. The adapters will likely be implemented (via COTS) as part of the object
services and/or common facilities, instead of a separate component. The major procedural

Working Paper 52 MR9401V2

interfaces that will likely require encapsulation to provide OMG-based application extensions to
well-known legacy services include:

• GSS-API (provides private and public key encryption, other security services)

• SNMP and CMIP/CMIS, possibly through XMP

• Directory, through DNS, CDS or XFN (CDS supports DNS and X.500 access)

• ftp

• smtp (possible X.400 integrated API encapsulation)

• telnet

• TCP and UDP sockets

The NASA V0 Network Office has numerous legacy services accessed by the aforementioned
APIs. By building adapters to encapsulate these API's, the legacy services are readily accessed by
advanced applications developed with the V1 infrastructure. The recognized V0 services and
integration strategy include:

• listserv - (mail exploder) integrated with smtp adapter

• anon ftp - (file access) integrated with ftp adaptor

• X.500 - (directory) integrated with CDS or XFN adaptor

• email reflector - (mail forwarder) integrated with DNS/CDS/XFN and smtp adaptors

• Usenet, WAIS, WWW, Gopher - (information search and retrieval) integrated with a
combination of the ftp and socket services

• V0 NOC services - (network mgmt) - integrated with XMP adapter

The proposed integration strategy has been successfully demonstrated by a number of vendors
(HP, IBM, DEC) and consortia (OSF), and is an ideal candidate for evaluation prototyping.

Transitioning of V0 networks and routers is an transition planning issue not relevant to the
architecture discussion. Potential IP address mapping issues relevant to ATM is discussed in the
internetworking sub-architecture discussion of section 4. Additional management issues and
strategies are discussed, in an architectural context, in section 5.3.

3.3.3.8 Traders and Federation

The concepts of service export, service import, and federation are explored in this section to better
understand the information flow aspects of the communications sub-architecture.

Working Paper 53 MR9401V2

3.3.3.8.1 Service Registration (export) Process

Interface
Repository

export (InterfaceDef,
Properties, Export
Policy Controller)

TraderPrint Server

TraderOfferDatabase

verifies types

stores offer

Root

CSMS SDPS FOS

Printers

Dot Matrix Laser

Type = DotM
Id = “D3”
Loc=“3rd”

Type = DotM
Id = “D4”
Loc=“4tf”

Type = Lasr
Id = “L3”
Loc=“3rd”

Type = Lasr
Id = “L4”
Loc=“4th”

Figure 27. Service Export

Figure 27 highlights the service export process. Whenever a service exporter (server) wishes to
advertise a service offer, it must register that offer with a trader. A service offer contains a
description of the service it provides. A service offer is comprised of its interface definition
(InterfaceDef), any properties and an optional export policy controller. Service properties can be
static or dynamic. Static properties are properties which rarely change such as printer speed etc.
Dynamic properties are properties that change frequently such as printer queue length. An export
policy controller can optionally be designated by an exporter. Service offers are stored by the trader
in a centralized or distributed database. The Interface Repository is utilized in this example.

Working Paper 54 MR9401V2

3.3.3.8.2 Service Request (import) Process

import(Context,
Properties,
searchPolicy)

Client

Servers

Dynamic
Binding

Function
Call

Requesting
Application

Implementation
Repository

Trader

ExportPolicyController TraderOfferDatabase

verifies types &
locates/returns implementation

negotiates policy, load
balancing and returns
values of dynamic
properites

Contexts structured in
Naming/Service Directory fashion

Interface
Repository

Figure 28. Service Import

Figure 28 highlights the service import process. Whenever importers of services (clients) require a
service, a trader is contacted to accept requests. A service request is an expression of the
requirements of a clients needs. A trader searches its offer database to find a matching service to
fulfill the client's request. A trader can select the most appropriate offer or an export policy
controller can utilize a services dynamic property value and select a service based on load balancing
policy etc. A trader can return a list of offers or a single offer to the client.

3.3.3.8.3 Federation of Traders

The global offer space should be assumed to be extremely large. Scalability of the offer space is
therefore critical. The offer space must be partitioned because no single trader can operate properly
over the entire range of the offer space.

Some users may find that all of their service requirements can be fulfilled within the offer space of
a single trader. Others users needs will demand expansion of the offer space. A tree structure
describing the adjacency of traders must be available to properly broaden the search of the name
space. Figure 29 depicts the chaining/referral of traders that can be implemented to expand the offer
space. The policy implications of going beyond the immediate offer space must be understood and
agreed to between trader administrators. A trader is just another service. By advertising itself to
another trader, it opens itself up to interworking with the other trader and establishing a federation.
The extent of what information they will share is largely policy - just as international trade partners
establish contracts, so do the traders.

Working Paper 55 MR9401V2

request
(Context
Properties)

Client Trader offer
space

(no match)
next adjacent

Figure 29. Federated Trading

3.4 Issues

3.4.1 Development Environment

Issues discussed in this section are intended to concentrate on the development of object-oriented
management and service applications in the distributed, heterogeneous environment. This area will
require ongoing SEPG analysis and oversight.

• Operating System - DCE technology was originally designed for UNIX platforms. Due to
vendors acceptance of this technology, it has been ported to IBM OS/2 and MVS OSs by
IBM, PC-DCE for Personal Computers (DOS), by Gradient, Window NT is porting DCE
clients. Support for advanced operating system will need to be shown. Recently, the
DEC/Microsoft bridge of CORBA to OLE using DCE's RPC as the wire protocol gave a
good look of events ahead. CORBA, if the trader is successful, will allow heterogeneous
implementations of middleware beneath the ORB, anyway.

• Debugging and other tools - The need for maximum computer resource utilization will
require multi-threaded applications. Multithreaded debuggers are currently lacking. There
are few vendors and universities working on developing multi-threaded debuggers(e.g.
Texas A&M University, IBM-TORONTO etc.) that will need to be investigated.

• Quality of service considerations must still be taken into account while designing object-
oriented distributed applications. Performance of the network, availability, and related QoS
requirements must be understood.

Working Paper 56 MR9401V2

• Security weaknesses - To achieve extensibility, many of the software interfaces in
distributed systems are made available to clients. Any client that has access to the basic
communication service can also access the interfaces to servers. Such an open architecture
is attractive to system developers, but software security measures are needed to protect the
services against intentional or accidental violation of access control and privacy
constraints. DCE offers security, data encryption and capability-based access control. The
issue is: is security being compromised on non-Unix platforms? HAIS is actively working
with OSF in integrating the DCE kerberos services with MIT version 4 kerberos, so that
computers outside of a DCE cell may be protected. Additionally, abstraction of DCE
security into OMG security and the GSS-API offer an opportunity to make this security
transparent.

• Exception and Event Libraries - If the distributed application does not contain any exception
handlers and the application thread gets an error, the application thread is terminated and a
system-dependent error message from the threads package is printed. These exception
libraries are ported for all Unix platforms and OS/2, MVS and PC for system-dependent
errors. Event libraries have a related, but more important requirement for the distributed
handling of events. DCE provide event services to manage this type of issues and DCE
threads have built in exception handling routines that CORBA products can use. Exception
and event libraries must be mapped into the new development environment.

• Templates - Templates are an abstraction of collection of either an object or an interface or
an action. The incremental modification relating templates must ensure that self-reference or
recursion in the template of the parent class becomes self-reference or recursion in the
template of the derived class. Object template subtype/supertype relationships do not
necessarily coincide with behavioral compatibility. This can create an issue as to how
templates can be easily used by the developer in a distributed environment, and if there are
good tools/products available to use templates for the distributed object-oriented
applications.

3.4.2 Interoperability Issues

Issues limiting or constraining interoperability include:

• Standard window environment for applications portability

• Standardization of C++

• Message catalogs mappings

• Error handling mechanisms

ORB user interoperability issues include definitions of interoperability and requirements for
interoperability. Definitions of interoperability issues include discussion of anticipated usage
scenarios and environments. Requirements and expectations for interoperability include
identification of issues such as:

• Should all objects be interoperable or just some?

Working Paper 57 MR9401V2

• Should a single ORB on most machine interoperate, or should many ORBs within a single
machine interoperate?

• Is there a need to move objects between different ORBs?

ORB implementor interoperability issues include a general approach to interoperability, and
potential mechanisms and protocols for interoperability. General approach issues discussions of
whether a common interoperability mechanism directly connecting all ORBs is better or worse than
a "universal ORB translator" that each ORB connects to. Specific mechanisms and protocol issues
for interoperability include many items, such as:

• Inter-ORB registration protocols

• ORB-to-ORB handshaking protocols

• The role of the dynamic invocation interface of the ORB

• The role of the static invocation interface

• Requirements for extensions to existing ORB functionality and APIs

• Implications of the ORB to

– name space

– access control

– persistent storage

– data formats

– static stubs

– object references

– message formats

– authentication

• Connection of the ORB to alternative transport protocols

Many of these issues are currently being examined by OMG for the CORBA 2.0 specification
release. Additionally, many of these issues can be readily resolved through the use of DCE
infrastructural technology integrated with the ORB.

Other issues under analysis for resolution with CORBA 2.0 include support for other language
bindings, requirements for additional object adapters beyond the basic object adaptor, operations
and specifications for the interface and implementation repository, support for transactions and
asynchronous communications, middleware support for multi-endpoint interaction and replication,
concurrency, and OMG compliance certification and testability.

3.4.3 Quality of Service

QoS considerations are far reaching - well beyond the communications sub-architecture. Work is in
progress in ISO to produce QoS architectures that would work for all forms of media and data.
Within OMG and the use of a trader, part of the end-to-end service negotiation needs to include

Working Paper 58 MR9401V2

negotiation of the QoS attributes for each service constituting a channel. QoS parameters are well
known for the ISO-RM, and need to be revisited in light of multimedia technology, such as OMG
CORBA and ATM. ISO/IEC JTC1/SC24 is investigating multimedia and hypermedia architectures
in an RM-ODP framework. This may eventually be implemented using OMG CORBA and object
services. QoS largely is a design issue and will be resolved past SDR. The QoS issues require
articulation of QoS requirements as they pertain to relevant system performance and availability.
Contributors working on QoS issues include ATM Forum, IMA, IETF, IEEE 802, NMF, and
other groups.

3.4.3.1 Performance

The use of trader within the ECS architecture enables the specification of quality of service (QoS).
QoS can be specified to improve user perceived performance. The implications of QoS are driven
by system policy and affect information, engineering, and technology planning. For instance, if a
policy decision is made for quick response time, then the information (data) model may require a
special partitioning of its information (data), the engineering model may require replication of
critical information, and the technology model may require broadband transmission of data, or
bandwidth allocation capabilities.

Interfaces to the services defined in this document should allow the implementation of the service
to be split into a low latency part and a latency tolerant part. The low latency part of the
implementation could then be placed close to the user, while a latency tolerant part of the service
could be placed anywhere. The concept of object caching, especially dynamic object caching,
provides a good example of how specific records within directory, naming, and trading services,
based on frequency of access, might dynamically be moved closer to the user to enhance
performance.

A positive secondary effect of object caching, while improving performance, is to reduce WAN
traffic due to the effective decrease of queries going outside the user's local environment. The
economic benefits of QoS specification are therefore additionally emphasized. Additional
discussion of QoS parameters described within the OSI-RM is provided in section 4.2 of this
document.

3.4.3.2 Availability

Providing QoS criteria is largely an implementation issue. For instance, if a client is bound to a
service, and a failure occurs, the interface to the service should provide for an alternate instance of
the service to take over. This can be done by making the failure visible to the user, through some
kind of a visual indication and the presentation of another interface to continue the service
elsewhere. Alternatively, the capability might be hidden from the user, and a default kicks over to
the new service for maximum availability, but the fundamental interface is unchanged.

3.4.4 Policy Implications

A trader is the center of a community established for the purpose of trading. The community
consists of members (agents) that have roles such as: trader, exporter, importer, trading
administrator, and trading policy maker. The trading activities of the community are service exports

Working Paper 59 MR9401V2

and service imports. These activities are governed by a trader policy. Some important rules for the
trader policy include:

• Security requirements for importers and exporters - rules to prevent unauthorized use,
disclosure and modification of service offers, to detect security breaches, etc.

• Searching requirements - rules to govern the scope and strategy considered by a trader in a
service import

• Accounting requirements - rules to determine charges for importing and exporting, credit
certification, audit control, etc.

• Transfer requirements - rules for stating that importers can import service offers for their
own use or pass them on to other entities; that exporters can export services they provide or
services provided by other entities, etc.

• Trader Quality of Service requirements - rules for performance requirements, consistency
requirements between what is given and what is wanted or between advertised and actual
values, etc.

Some of the above requirements, e.g., security and accounting requirements, will be provided by
other object services (such as access control lists within security, and systems management
accounting services).

Each importer can also have its own importer policy that restricts the set of service offers
considered by a trader in a service import. Each exporter can also have its own exporter policy that
restricts the set of importers to which a trader may convey a service offer. On service import, the
matching process performed by a trader is governed by the trader policy of the trader and the
importer policy of the importer. On service export, the offer placement process performed by a
trader is governed by the trader policy of the trader and the exporter policy of the exporter. The
mutual matching of policies are called contracts, and can be drawn within ECS by Memoranda of
Understanding (MoU's).

Every service within ECS is a potential importer or exporter. The policy implications of the service
interactions need to be understood in light of the set of requirements listed above. As multiple
traders are developed, a trading syndicate comprised of a community of trading communities may
be established. This community, equivalent perhaps to a DAAC or the ECS, has a common
administrator established for the purpose of making the service offer within each trading
community available to other agents in the syndicate. When different administrators are involved
(perhaps between DAACs or between ECS and other components of XnDIS), then a trading
federation is established. In a trading federation, a community of trading syndicates might use their
administrators to work with an external arbitrator established for the purpose of making the service
offers within each individual trading syndicate available to other agents in the trading federation.

To ensure that security is maintained, while planning the access control list, it will be important for
the ECS team to keep the level of access control restrictive enough. A special set of individuals or a
special group should be given permission to create accounts and groups in the root directory of the
security space. At the same time, enough access will be given to the individuals with administrative
responsibility. Upon configuring cell, security, directory, time, file and other administrative

Working Paper 60 MR9401V2

groups should be created to perform different administrative tasks for unique service classes. In
addition to this groups, individual users need permission to control some information kept in the
registry database, such as password, home directory, or login shell.

3.4.5 Incremental and EP Track Planning/Coordination

The phasing of the architectural components requires detailed coordination with the early CSMS
developers, with an initial focus on the prototyping developers.

3.4.6 Multimedia Extensions

Multimedia technology is an emerging technology that ECS should anticipate as an architecture
evolvability test. The IMA, through its MSS activities, should be publishing in October 1994 with
MSS objects added as OMG object services. Applications exchanging multimedia data require
support for streams of data whose characteristics differ from those currently supported by the
CORBA specification. The media concerned can be classified as static (e.g., raster and vector
images), sequential (e.g., animation), or isochronous (e.g., video or speech). The display of
multiple media in a coordinated way requires synchronization between separate data streams (e.g.,
video and voice), and with user input. Integrating multimedia data into computer applications has
several issues, including:

• How to control commonly-required manipulations of the data, such as splitting data from
one source into several streams or mixing data from several sources

• How to synchronize related but separate streams, such as video and voice

• How to smoothly transition from multimedia data searching, to location, then to
visualization

3.4.7 Market Forces and Competition

The object wars and vendor inter-firm rivalry are continuing factors in taking any position on any
technology. There is good news - vendors are collaborating through consortia, and more recently,
the consortia are talking to each other, and to the standards bodies. This movement is creating a
better model of integrating market push with market pull. To combat the constant state of flux of
the market, HAIS should actively pursue the following:

• High use of standards where applicable

• Consortia involvement

• Abstract, high level APIs that provide alternative middleware migration flexibility

• Continued use of subcontractor support for market and vendor analysis

HAIS has been successfully performing the tasks above to ensure up-to-date information of the
market. The market dynamics should be welcomed as a sign of health in the industry to robust,
viable implementations of advanced technologies for ECS. A short-term inconvenience has long-
term benefits to ECS with better products.

Working Paper 61 MR9401V2

4. Internetworking Sub-Architecture

4.1 Assessment of Needs/Drivers

The needs/drivers for the internetworking sub-architecture are an extension of the needs/drivers
articulate in section 3.1. The internetworking architecture provides the local and wide area
communications resource for separate logical processes, running on physical hosts, to share data
with each other. Mechanism for the reliable end-to-end transfer of data from one communicating
source to destination are the emphasis of this sub-architecture. Specific needs and drivers of the
internetworking sub-architecture are to provide:

• a scalable network infrastructure

• an enduring network infrastructure

• a flexible network infrastructure

• an easy, low risk migration capability

• new capabilities, essentially "built-in"

• seamless LAN/WAN integration

• easy installation of operation

• high network availability

• the allocated use of shared network

• any-to-any connectivity

• geographic independence

• high performance, low delay

• bandwidth on demand

• seamless integration of technologies (e.g., shared vs switched mediums)

Many of these drivers are resolved with today's internetworking technology (largely through
available TCP/IP-based infrastructure) and will not be discussed in detail in this paper. There are
unique drivers not met with today's technologies, as well as architectural considerations of
evolvability, that are not necessarily met with today's technologies. These areas include:

• architectural support for QoS end-to-end establishment

• Real-time protocols for file transfer, increased performance and multimedia

• scalability of network layer IP addresses and other fixed formatted protocols

• seamless technology integration of frame and relay technologies using ATM

• technology migration of routed flow to ATM switched fabric flows

Working Paper 62 MR9401V2

QoS management is in the process of improvement through the introduction of OMG technologies
and the use of a trader. Multiple instances of traders can exist for specific service types.
Negotiation of QoS has occurred within protocol machines for years, and are only now being
considered for logical distribution. This approach hold tremendous value for QoS negotiation for
multimedia communications. Protocol improvements, including polymorphic formats, real-time
allocations through QoS, and parallelism of state machine function through vertical partitioning are
active areas of ongoing research around the country of which HAIS is reviewing and participating.
ATM technology is an active area of research, consortia activity, and prototyping.

4.2 Logical Architecture

4.2.1 Introduction to OSI-RM

The ODP engineering model, discussed in section 3.2 and Appendix A, defines multiple
transparencies that need to be 'hidden' from user/provider interactions. The internetworking sub-
architecture is primarily responsible for providing platform-level communication resource
transparency. The majority of the other transparencies are provided by services defined within the
communications sub-architecture.

Internet-based communication systems today can best be modeled within the lower-level
framework of the Open Systems Interconnection Reference Model (OSI-RM). The OSI-RM is a
seven layer communications framework. The concept of layering within the OSI-RM includes the
use of layers, communication entities, service access points, protocols, and connections, elements
of layer operation, routing, and management. Of special relevance to the internetworking sub-
architecture are the lower four layers of the OSI-RM - the transport, network, data link, and
physical layers.

The principles of layering in the OSI-RM treats each open system as logically composed of an
ordered set of multiple subsystems. In the case of the internetworking sub-architecture, there are
four such subsystems - the transport, network, data link, and physical layers. Open systems
intercommunicate between adjacent subsystems, on a layer by layer basis. The layers within a
single open system communicate to the layers above it and below it.

Communicating entities exchange information by establishing an association in each particular layer
using a protocol. There can be multiple classes of protocols defined for each layer. For instance,
within the transport layer there may be a connection-based protocol, such as TCP , and a
connectionless protocol, such as UDP.

Connection-oriented communication service at each layer involves connection establishment
between two or more open systems, data transfer, and connection release. A clearly established
lifetime is established with the following fundamental characteristics:

• two or more party agreements of the transmission of data among the peer layer entities
using the provider of the lower-level service (for example, transport layer connection
establishment through the use of the network layer service)

• negotiations between all parties of the parameters and options governing the transmission
of the data

Working Paper 63 MR9401V2

• address resolution and transmission overheads for connection establishment are avoided on
the actual data transfer

• context for successive data transmissions are provided, making data sequencing and flow
control possible

The characteristics of connection-mode transmission are attractive in applications calling for long-
lived, stream-oriented interactions between entities, such as remote terminal, file transfer, and
long-term remote job entry. Connectionless mode transmission is the transmission of a single unit
of data from a source to a sink without connection establishment. The service is initiated by a
single service access, and is inherently asynchronous. The characteristics of connectionless-mode
transmission are:

• no dynamic agreement between the peer layers is required

• unit of data, destination address, QoS selection, options, etc. are transmitted together
across the peer layer of the two open system entities.

Due to the asynchronous nature of connectionless-mode communications, it is possible that
individual units of data are routed independently, and arrive in a non-structured order.

The elements of layer operations include protocol selection and identification, protocol version
selection and identification, negotiation mechanisms, and communication functions. For each
layer, protocol identification is a process to determine the type of protocol being used. Multiple
protocols may be used within a layer. To enable communication, however, there must be an
agreement of the particular protocol. The protocols are identified either by the protocol itself, using
an embedded protocol identifier, or by an address map that identifies the protocol at a particular
entity. The protocol version identifier identify the level of a particular protocol in use (for instance
Kerberos V4 vs. Kerberos V5). The identification of the version presupposes that the protocol has
been identified. Provisioning for alternative protocols or protocol version provides the flexibility,
within a layer, to substitute in alternative protocols.

The negotiation of protocol version can only occur in connection-mode communication. The calling
entity, at a particular layer, sends information of all supported protocol versions to a peer entity.
The called entity checks for a compatible version,and uses the latest version available to both peer
entities. If there is no common version, the connection establishment request is rejected.
Connectionless-mode protocols provide no negotiation mechanism. Identification of the protocol is
either known a-priori, or explicitly conveyed within the protocol data unit 's (PDU's) transmitted.

The functional modes of communications for connection and connectionless communications are
identified in Table 3 below. Note that not all modes are required for a protocol implementation. The
OSI-RM provides definitions of each of the functions for the interested reader.

Working Paper 64 MR9401V2

Table 3. Communication Mode Functions
Function Conn C'less

Conn Estab. and Release X

Suspend X

Resume X

Muxing & Splitting X X

Normal Data Transfer X X

Data Transfer during Estab. X

Flow Control X X

Expedited Data Transfer X

Segmenting X X

Blocking X

Concatenation X X

Sequencing X X

Acknowledgement X X

Error Detect & Notification X X

Reset X

Routing X X

Quality of Service X X

The function names are largely self-explanatory with the possible exception of expedited transfer of
data, routing, and quality of service functions of communications. An expedited transfer of data is
a data unit transmitted to a peer entity with priority transmission and/pr processing over normal
data units. An expedited data transfer is typically used for signalling and interrupt purposes, and is
independent of the states and operations of the normal data flow. The flow is assumed to be used
to transfer small amount of data infrequently, and is not to be considered a part of routine transfer
of data. It is available as a means to handle exceptional circumstances. Routing within a layer
enables communications to be relayed by a chain of peer entities. The routing function is
transparent to other layers in an open system. The layer entity which participates in a routing
function usually has a routing table, such a routing device for the IP layer.

Quality of Service (QoS) is a collective name given to a set of parameters. There are two sets of
QoS parameters. These parameters are negotiated at the time the connection is established, either by
the peer layer entities, or by an intermediary. The first set applies to both connection and
connectionless service and includes both single- and multiple-transmission parameters. The second
set of parameters are for connection-mode communications only. QoS parameters are defined for
each layer of the OSI-RM. A sample of the parameters is provided below:

• Connection/Connectionless Parameters

– Single Transmission Parameters

- expected transmission delay

- probability of corruption

- probability of loss or duplication

Working Paper 65 MR9401V2

- probability of wrong delivery

- cost (based on number of hops or shortest path)

- protection from unauthorized access

- priority

– Multiple Transmission Parameters

- expected throughput

- probability of out of sequence delivery

• Connection-Mode Parameters

– connection establishment delay

– connection establishment failure probability

– connection release delay

– connection release failure probability

– connection resiliency

Figure 30 illustrates the OSI-RM. The internetworking sub-architecture only extends through to
layer 4 - the transport layer. The communications sub-architecture, discussed in Section 3,
occupies layers 5-7 of the OSI-RM, but does not adhere completely to a layered architecture. As
such, services defined within the communications sub-architecture actually span multiple OSI-RM
defined layers. The minimalization of layers beyond the transport layer is desirable to improve
performance and minimize overhead. Vertical partitioning, instead of horizontal layering, of
communication services above the transport layer enables evolvability and separation of
components for QoS optimization.

The internetworking architecture is comprised of end systems and intermediate systems. End
systems include end-to-end (source-to-sink) data transmission over the transport layer, and layers
one through four, at a minimum. They are open systems which, for a particular instance of
communications, are the ultimate source or destination of data. Intermediate systems , also called
relay systems, are open systems that make use of OSI functions up to a certain layer, providing a
relay function at the highest layer supported. Figure 30 depicts a network layer relay, generally
called a router. End systems may communicate to other end systems through the services of
intermediate systems. A general description of the transport, network, data link, and physical
layers of the OSI-RM and associated services follows.

Working Paper 66 MR9401V2

Application Application

Presentation Presentation

Session Session

Transport Transport

Network Network Network Network

Data Link Data Link Data Link Data Link

Physical Physical Physical Physical

ES IS

Layer

7

6

5

4

3

2

1

Application protocol

Presentation protocol

Session protocol

Transport protocol

ESIS

Figure 30. Communication Involving Relay Open Systems

4.2.2 Transport Layer

The transport layer provides transparent transfer of data between higher level entities and relieves
them from any concern with how reliable and cost effective transfer of data is achieved.
Cost/performance optimization is achieved within constraints imposed by the overall demands of
all concurrent higher level sessions, and the overall quality and capacity of the network-service
available to the Transport layer. All protocols defined in the transport layer have end-to-end
significance. This means that the transport layer is end system oriented and that transport protocols
only operate between end systems. The transport layer is not concerned with routing and relaying
aspects - this is a lower-level issue. To provide a requested service quality, the transport functions
invoked in the transport layer depend on the quality of the network layer service.

Working Paper 67 MR9401V2

Primary services provided by the transport layer for connection-mode communication include
transport connection establishment, transport connection release, data transfer, expedited data
transfer, and suspend. Connectionless-mode communication provides all of the above except for
data transfer omits segmentation and PDU reassembly.

4.2.3 Network Layer

The network layer provides the functional and procedural means to exchange network data units
between transport entities over network connections, both for connection-mode and
connectionless-mode communications. It relieves the transport layer from concern of all routing
and relay operations associated with network connection. The basic function of the network layer
is to provide the transparent transfer of data between transport entities.

This layer contains all functions to provide to the transport layer a firm network/transport layer
boundary, independent of underlying communications media in all things other than QoS. In this
way, the network layer masks the differences in the characteristics of different transmission and
subnetwork technologies into a consistent service.

The QoS is negotiated between the transport entities and the network service at the time of
establishment of a network connection. While the QoS may vary from one network connection to
another it will be agreed for a given network connection and be the same at both network
connection points. This QoS will be maintained for the duration of the connection. Specific QoS
parameters include residual error rate, service availability, reliability, throughput, transit delay
(including variations), and delay for network connection establishment.

4.2.4 Data Link Layer

The data link layer provides functional and procedural means for connectionless-mode
communication among network entities, and for connection-mode communications for the
establishment, maintenance, and release data link connections among network entities, and for the
transfer of data link data units. A data link connection is built upon one or several physical
connections. Detection and possible correction of errors occuring in the Physical layer is taken care
of by the data link layer. Additionally, the data link layer enables the network layer to control the
interconnection of data-circuits within the physical layer.

QoS parameters may be optionally selected. The data link layer establishes and maintains a selected
QoS for the duration of the data link connection. The QoS parameters include mean time between
detected but unrecoverable errors, residual error rate, service availability, transit delay, and
throughput.

4.2.5 Physical Layer

The physical layer provides the mechanical, electrical, functional, and procedural means to activate,
maintain, and deactivate physical connections for bit transmission between data link entities. A
physical connection may involve intermediate systems, relaying bit transmissions within the
physical layer. Physical entities are interconnected by a physical medium in the physical layer. The
majority of the LAN/WAN channel bit transmission rates are depicted in Figure 31. The average

Working Paper 68 MR9401V2

available bandwidth available to a physical node at any given time is based on an equal access
channel with no priority of users. The diagonal lines in the chart represent shared media, where
average available bandwidth drops as the number of communicating nodes increases. The vertical
lines represent full bandwidth availability to the desktop introduced by non-blocking switched
media. Bus and point-to-point technologies are not shown.

Throughput/Node vs. Node Count

100
Kb/s

1
Mb/s

10
Mb/s

100
Mb/s

1
Gb/s

10
Gb/s

100
Gb/s

1000

100

10

1

Average Available Throughput Per Node

N
o

d
e

C
o

u
n

t

802.3, 802.5

FDDI

STS-3c (STM 1)

STS-12c (STM-4)

STS-24c (STM-8)

STS-48c (STM-16)

STM-64

ATM
STM-1

8x8

ATM
STM-1
64x64

ATM
STM-4
64x64

DS-1

DS-3

Shannon's Limit:
25,000 Ghz Fiber

Figure 31. Topology Considerations for Physical Layer

4.3 Implementation Architecture

4.3.1 Internetworking Services

The major internetworking service classes are transport layer service, network layer service, data
link service, and physical layer service. These correspond directly to the logical architecture
discussed in section 4.2, and provide the same essential services as previously discussed. This
section examines alternative protocols for each service class. Further analysis of the protocols is
not explored.

4.3.2 Transport Services

Entities within the communications sub-architecture specify the class of transport service to be
provided at connection establishment. The transport service classes can be characterized by
combinations of selected values of parameters such as throughput, transit delay, and connection
set-up delay. Guaranteed values of parameters may additionally be requested, such as residual
error rate and service availability. All of these parameters are QoS parameters that are negotiated
prior to connection establishment, either by the transport layer service itself, or by an intermediary
such as a transport-type trader. In selecting the range of transport services required, it is imperative

Working Paper 69 MR9401V2

that all transport service requirements for the various types of anticipated traffic flows generated are
covered.

Interaction of the transport service to other service layers is well defined in the OSI-RM.
Implementations of the transport layer service include (non-exhaustive list):

• IETF Transmission Control Protocol (TCP)

• ISO TP4 (ConnectionLess Transport Service)

• IETF User Datagram Protocol (UDP)

• ISO TP0, 1,2, & 3 (Connection-Oriented Transport Service)

• TCP Extensions for High Performance

• XTP experimental

ISO has defined five classes of transport protocol: Type A network (Class 0 and 2 - simple and
multiplexing class), Type B network (Class 1 and 3 - basic error recovery and multiplexing class),
and Type C network (Class 4 - error detection and recovery class). The transport service
specification is the same for all classes. In Europe Type A network with Class 0(often called TP0)
is very popular, because of it's simplicity and good performance.

Transmission Control Protocol/Internet Protocol (TCP/IP), which is connection oriented, is
designed to provide reliable communication between pairs of processes across a variety of reliable
and unreliable networks and internets.This stream oriented protocol provides two useful facilities:
Data stream push and Urgent data signaling. TCP connection establishment is a three-way
handshake. To initiate a connection, an entity sends an RFC (request for connection) X, where X
is the initial sequence number. The receiver responds with RFC Y, ACK X by setting both the
SYN and ACK flags. Finally the initiator responds with ACK Y. Data transfer in TCP is viewed
logically in terms of stream of octets. TCP normally exercises its own discretion as to when to
construct a TPDU for transmission and when to release received data to the user. The normal
means of terminating a TCP connection is a graceful close. An abrupt termination occurs if the user
issues an ABORT primitive. In this case, the entity abandons all attempts to send or receive data
and discards data in its transmission and reception buffers.

The User Datagram Protocol/Internet Protocol(UDP/IP) provides a transport level datagram
service. UDP is basically an unreliable service; delivery and duplication protection are not
guaranteed. To establish the connection, UDP assembles a data unit and hands it to IP for
transmission. Incoming data units are checked using the checksum, but there is no provision for
error reporting.

The OSI Class 4 transport protocol (often called TP4 or Type C network) and TCP have numerous
similarities but also some differences. Both protocols are designed for providing a reliable,
connection-oriented, end-to-end transport service on top of an unreliable network that can lose
,garble, store, and duplicate packets. Both must deal with worst case problems such as a subnet
that can store a valid sequence of packets. TP4 and TCP both use three-way handshakes and share
the general concepts of establishing,using and releasing connections. As listed in Table 4, both
protocols have notable differences.

Working Paper 70 MR9401V2

Table 4. TCP and TP4 Comparision
Feature T C P T P 4

Number of TPDU types 1 9

Connection Collision 1 2

Addressing Format 32 bits not defined

Quality of Service Specific options open ended

User Data in CR Not permitted Permitted

Stream Bytes Messages

Important Data Urgent Expedited

Piggybacking Yes No

Explicit Flow Control Always Sometimes

Subsequence Numbers Not permitted Permitted

Release Graceful Abrupt

Further analysis, tradeoff, and selection of specific implementation(s) is not discussed in this
paper. The TCP transport is the protocol of preference for ECS, however, based on its dominance
in industry usage and wide-community support.

4.3.3 Network Services

The network service classes can be characterized by combinations of selected values of parameters
such as throughput, transit delay (including variations), and delay for network connection
establishment. Guaranteed values of parameters may additionally be requested, such as residual
error rate and service availability. All of these parameters are QoS parameters that are negotiated
prior to connection establishment, directly by the network layer service through one or more
protocol implementations.

Interaction of the network service to other service layers is well defined in the OSI-RM.
Implementations of the network layer service are generally suballocated to optimize specific
functions within the network layer service, such as routing, address resolution, and network data
unit transfer. Implementations of the network layer (sub)services include (non-exhaustive list):

• Internet Protocol

• Internet Control Message Protocol

• Open Shortest Path First Routing Protocol

• Address Resolution Protocols (ARP/RARP)

• Routing Information Protocol

• ISO Connection-Oriented Network Protocol

• ISO Connectionless Network Protocol

• End System Intermediate System

• Intermediate System Intermediate System

Working Paper 71 MR9401V2

• TUBA, IPng, SIP, PIP, IPAE, GUP, other experimentals

• S2K Real-Time IP

Further analysis, tradeoff, and selection of specific implementation(s) is not discussed in this
paper. The internet protocol (IP) is the protocol of preference for ECS, however, based on its
dominance in industry usage and wide-community support.

4.3.4 Data Link and Physical Layer Services

There are many implementations of data link and physical layer services. The more popular include
8802.2 LLC with 8802.3, 8802.4, or 8802.5 MAC for the data link layer, and 10 BaseT, and
FDDI PLP for the local LAN physical layer vice SMDS, Frame Relay, Synchronous Digital
Hierarchy for the WAN physical layers. Recently, an integration of LAN and WAN technology
has been promised with ATM technology. ATM may prove to be the preferred internetworking
solution (see Figure 35) in the next three to five years, but many problems remain unresolved.
These issues are addressed in section 4.4. Architectural aspects of the data link and physical layer
services revolve more around policy requirements, modeling analysis, and QoS requirements then
high-level architecture and will be the subject of ongoing work through PDR.

4.3.5 Network Security Architecture

Security architecture is a complex issue, dependent on many interrelated issues, included QoS and
policy requirements, and design implementation details. A security design is due to the customer at
PDR + 2 months. Specific security mechanisms in consideration span all three CSMS sub-
architectures and is shown in Figure 32.

Access control, authentication, data integrity, and encryption are all related to the communications
and systems management sub-architecture services. The access control mechanism is used to
discourage unauthorized access to a resource or to limit the use of a resource in an unauthorized
manner. Authentication exchange is a mechanism wherein the identity of a party must be verified
before access is granted to a resource. Data integrity is a mechanism that is used to ensure that data
has not been destroyed or altered in an unauthorized manner. Encipherment (encryption) uses
cryptographic techniques to encrypt data, either automatically via software, or via smart cards
carried by 'secure' personnel. The policy implications of security, and systems management
security overall are discussed further in section 5. The combination of access control,
authentication/authorization, data integrity, and encryption together affects cell engineering
practices and the logical distribution of services.

Digital signature, traffic padding, notarization, transport and network level encryption, and routing
control are all internetworking related security mechanisms. Digital signature is used to ensure that
the recipient of data is the proper recipient and also to ensure that the data has not been changed.
This is done by applying cryptographic information to a protocol data unit. Traffic padding is a
mechanism wherein spurious bits, octets, or other blocks of data are appended to protocol data
units.The notarization service ensures that a third party is used to guarantee the accuracy of
information, not only its content but its proper origin, timing, and delivery as well. Routing control
contains rules that allow relay mechanisms to avoid specific networks or data communications

Working Paper 72 MR9401V2

links for purposes of security. The use of dual-homing and router firewalls have both security and
policy implications.

EnciphermentTraffic Padding

Digital Signature

Data
Integrity

Authentication
Exchange

Access Control

Routing
Control

Notarization

Security
Mechanisms

Figure 32. Security Mechanisms

4.3.6 Network Topology Architecture

The detailed aspects of LAN/WAN sizing and configuration is a design implementation process not
discussed in this paper. The architectural impacts of LAN and WAN design have a high degree of
coupling with policy requirements and the SDPS Archive and Processing work in progress that
will in a large way drive the resultant recommendations for LAN/WAN design.

Modeling will be performed as documented in the modeling plans to size input/output flows for
each site. This work will be integrated with site specific processing and archive placement to arrive
at a recommended implementation.

Figure 31 (previously illustrated) illustrates alternative shared and switched media topology
alternatives from a capacity perspective. The three-tier media decomposition in the HAIS proposal
to NASA is still valid for topological design. There is a natural classification of media into buses,
switched media, and shared media. Each class of media will be analyzed in light of its ability to
meet the loading and QoS requirements required at each site.

4.4 Issues

4.4.1 Performance Issues

4.4.1.1 Delay

The large file sizes of ECS datasets and the potential for significant distances between users and
providers creates a time/bandwidth phenomenon that needs to be carefully considered for WAN
pipes sizing. For very large file sizes over relatively short distances, the bandwidth of a pipe may
appear to be the constraining factor in the time it takes for a file to get completely transferred from
one place to another. The electrical delay of the pipe is negligible compared to the actual time it

Working Paper 73 MR9401V2

takes for a file to be transferred due to bandwidth constraints because, in effect, the file is
absorbing the total capacity of the communication channel. By increasing the bandwidth, the
transfer time is improved, but only to the point where the electrical delay of the communication
path is less than the quotient of the file size against the allocated bandwidth. At this point, the file
can be totally absorbed by the pipe, and capacity for additional data would still be available. Now
the response time is limited by the electrical delay of the pipe. In other words, dependent on the file
size, the limiting factor in file transfer time can alternate from being constrained by bandwidth to
being constrained by the absolute electrical path delay. Initial response time will always equal the
electrical path delay (this is the time it takes to get one bit of information through) plus the transfer
setup time, but time for total file transfer is not necessarily improved by adding more bandwidth.

4.4.1.2 Object Caching

The concept of object caching has been around for a relatively long time. Advanced research is
investigating ways to dynamically allocate object stores based on user frequency of access to the
data within the object stores. Key stores for the ECS include directory, security, file, and trader
stores. By intelligently placing information, user-perceived performance is improved, and WAN
object store access dramatically drops. This strategy should be exploited as much as possible to
reduce internet traffic and improve performance. HAIS is currently negotiating a contract with the
University of Southern California (USC) to further investigate this issue.

4.4.1.3 Protocol Enhancements

Many universities and research initiatives (CNRI) are investigating methods to improve the
performance of transport and upper layer protocol implementations. Some of the methods include
VLSI implementation, alternative code implementations, and the vertical partitioning of state
machine functions into latency tolerant and latency intolerant components. HAIS has had
discussions with CNRI on this subject and is planning an RFP on this topic this area for further
analysis. Related topics of protocols are discussed in 4.4.4.

4.4.1.4 Quality of Service Mappings

Total QoS negotiations at all levels of a communications stack, while specified in the OSI-RM, is
only partially implemented in practice. With the future inclusion of OMG CORBA and Object
Services, and ATM technology, an opportunity exists to integrate end-to-end QoS negotiation for
the entire user to provider channel. The use of OMG trader in this area is vital to act as a liason in
coordinating all subsystem entities.

Integration of the trader with ATM QoS parameters is an ongoing area of work both within ATM
Forum and the vendor companies.

4.4.2 Multimedia Issues

In the future, applications which exchange multimedia data will require support for streams of data
whose characteristics differ from those currently supported by the CORBA specification. The
media concerned may typically be classified as static (e.g., images), sequential (e.g., animation),
or isochronous (e.g., video or speech). The display of multiple media in a coordinated way

Working Paper 74 MR9401V2

requires synchronization between separate data streams (e.g., video and voice), and with user
input. Integrating multimedia data into computer applications raises a number of issues, such as:

• How to control commonly-required manipulations of the data, such as splitting data from
one source into several streams or mixing data from several sources

• How to synchronize related but separate streams, such as video and voice.

The interactive multimedia association (IMA) is involved with analysis of this problem and is
developing CORBA-based common facilities for multimedia applications. Additional, ISO is
developing a framework architecture with QoS negotiation for multimedia applications.

4.4.3 ATM Issues

ATM uses the mechanism of multiplexing variable-sized datagrams onto small fixed-size cells.
Cells offer performance and implementation advantages to networks that service many types of
traffic, but they incur bandwidth inefficiencies due to protocol headers and datagram
fragmentation. The strategic issues associated with ATM, as with any new technology, are
individual and tied to economics vs. productivity as shown below:

• Does traffic load really require migration from existing solutions ?

• What kind of ATM migration plans do vendors offer ? (Is this a killer superhighway or a
technology looking for the market?)

• If ATM really is the next generation of technology, should one wait for the price drop?

• How many existing network devices (e.g. router, gateway etc.) will be compatible with
ATM?

• From cost point of view, is frame relay better or ATM?

Technical issues of ATM still unresolved by the industry are highlighted below.

4.4.3.1 Traffic Management

Studies have shown that cell-based networks, using standard protocols are inefficient in carrying
wide-area data traffic. ATM-based networks using SMDS and IEEE 802.6 protocols lose more
than 40% of their bandwidth to overhead at the network level and below. Control actions are
needed to improve the traffic performance during overloads and ATM network failures. High-
performance ATM based networks do, at times, experience failures, congestion, and periods of
degraded performance. During this period of excessive congestion, a switch could begin
selectively discarding ATM cells, with the intent of maximizing delivery of high priority traffic by
setting the ATM cells with the priority bit to zero for as long as possible. During congestion
periods, ATM switches also could transmit ATM layer congestion notifications in both the forward
and backward directions of virtual channel connection (VCC) and virtual path connection (VPC)
transmission. ATM cells contain operations information such as a performance data, for the
underlying ATM connections. These cells are referred to as operations and maintenance (OAM)
cells. Use of these cells for reporting congestion (as opposed to simple cell tagging) allows for
additional information such as level and cause of congestion, to be supplied along with the

Working Paper 75 MR9401V2

congestion indication itself. Operations and management play a key role in the viability and success
of the emerging ATM networks.

4.4.3.2 Address Mapping: LAN/WAN Adaptation and Interfaces

Address mapping of the IP address to ATM addresses are not well defined. This area will need to
be addressed in future work by the ATM Forum and standards bodies. The issue can be extended
to all ATM Adaptation Layers (AAL) for LAN and WAN integration and interoperability. Open
bridging is a technology solution to this problem, but it is not been proven operationally.

4.4.3.3 Signaling and Call Control

ATM represents a new generation of switched architectures, adding high-speed, low-latency, end-
to-end management and supporting multimedia applications. Because of uniform packet size,
traffic is switched very fast through a connection-oriented network. By contrast, switched 56,
ISDN, SMDS, HSSI (High-Speed Serial Interface), HIPPI(High-Performance Parallel Interface)
require more addressing overhead and use slower technology; frame relay and X.25 have longer
latency and carry only data.

A comprehensive signaling and connection management system will be critical to operating an
ATM network. At higher transfer rates, by the time a problem can be detected and an adjustment
made, the damage may already be done. Connections must be capable of being brought up, or
taken down, as needed to reflect dynamic traffic patterns and application QoS requirements. ATM
Forum is working on the Q.93B signalling standard to help resolve this problem, but it has not
been tested with WAN delays introduced.

4.4.3.4 QoS Integration with Trader

This issue was referenced in 4.4.1.4. QoS mechanisms to manage overall traffic flow and isolate
individual flows with specific QoS requirements is essential to the success of ATM. The QoS
service must scale over a large range of data rates and network facilities.

4.4.4 Fixed Format Protocols

All fixed format protocols, TCP, IP, etc. used a fixed length PDU that has control bytes allocated
for the different protocol functions. Certain functions do not scale well in a larger scale computing
environment. Packet sizes, window sizes, source and destination port assignments, sequence
count, and address are all functions that ultimately do not scale with fixed format protocols. The
waning supply of Class C address space allocations for IP is a testament to this issue. ECS
performance over long distances could become constrained by TCP sequence and window sizes.
The 64 Kbyte packet size is very small in consideration of the file size estimates associated with
ECS. Two byte source and destination port assignments are limiting the number of accessible
applications on any given host. Either new protocols with longer fields will eventually be required,
or protocols with more flexible formats are in order for the next generation of protocols.

Working Paper 76 MR9401V2

5. System Management Sub-Architecture

Note: a separate white paper discussion of the systems management services exist that discusses
the policy aspects of systems management relevant to service distribution of fault,
configuration, accounting, performance, security, and other primary systems management
services. This paper, and specifically this section on systems management, focuses on the
policy-neutral architectural aspects of systems management.

5.1 Assessment of Needs/Drivers

At the ECS System Requirements Review (SRR), it was made clear that a perception existed in the
community that the SMC was a centralized solution to systems management that represented a
single point of failure to the ECS. Furthermore, great concern was expressed over the presentation
of operational scenarios that portrayed the SMC as a deterrent to user access and a burden of
authority. Regardless of any perceptions, the systems management sub-architecture has the
following needs or drivers:

• no single point of failure

• allow DAACs to manage their own resources

• provide system-wide monitoring and coordination

• provide a policy neutral architecture

• within an implementation, allow distribution of authority based on policy

• do not interfere in-line with operational DAAC functions

Avoiding any single point of failure is paramount to good system engineering practice. All system
functions must be implemented in a manner that provides high availability and failure protection.
The concept of a central monitoring and coordination function (versus central management and
control) allows GSFC to monitor activities between all DAACs and within DAACs to identify
problem areas and coordinate solutions as required. Performance analysis of the total system
would become a predominant SMC function. Flows outside of ECS would be monitored at the
SMC.

Local management at the DAACs of their unique resources, with visibility when required across
the system is synonymous with the concept of federation in advanced enterprise management
solutions. The federated approach to systems management allows the DAACs to work problems
between themselves without having to get GSFC involved unless appropriate. This represents an
expedient approach to problem resolution, by allowing the involved parties to directly resolve a
problem.

A policy neutral architecture defers policy decisions out to the implementation (design) stage, and
allows flexibility for system reconfiguration to reflect policy changes over time. Distribution of
authority provides flexibility for monitoring and coordination backup, both at the DAACs and at

Working Paper 77 MR9401V2

GSFC. Finally, the concept of systems management being unobtrusive to in-line operations
acknowledges that systems management is a service to users.

All of these needs/drivers can largely be met with COTS and near-COTS products that will be
discussed in this section of the CSMS architecture working paper. The architecture is based on
emerging enterprise management solution that are based on CORBA 1.1 technology with the
backing of major consortia and industry vendors.

5.2 Logical Architecture

Figure 33 illustrates the systems management logical architecture. Systems Management can
logically be viewed as being comprised of managers and managed objects arranged and
interconnected through a protocol and a management information model. The manager has
management applications, communication services, and an information model. The managed object
shares communications services with the manager, and adheres to selected parts of the information
model.

The management applications are popularly recognized as fault, performance, accounting,
configuration, and security management. These application classes actually belong to the
management functional areas defined in ISO IS 7498-4. These high-level application classes (called
functional areas in ISO) are in a state of evolution and due to be finalized sometime in 1994.
Additional high-level systems management applications are recognized, both throughout the
industry and on the ECS project. The ISO functional areas actually rely on numerous underlying
system management functions (SMF's). These underlying management services are similar to, and
have an overlap with, many of the object services and common facilities identified for the CORBA
architecture of section 3.3. Section 5.3 of this paper will discuss this topic in more detail.

The communications services include the mechanisms to transfer systems management related
traffic between managed objects and the manager, or between managers. The communications
between a managed object and a manager involves an agent, typically co-resident with the managed
object, transferring information through a communications channel to the manager. The agent
collection mechanisms, notification mechanisms, and manager operations mechanisms are all part
of the communications service between the manager and the managed object. The collection
mechanism is involved in retrieving and maintaining a local instance of data about the managed
object. The notification mechanism is used to report events about managed objects. The operations
mechanism defines the operations to create, retrieve, modify, delete or perform other operations on
an agent. The interaction between the manager and a managed object additionally involves a
protocol. The protocol provides the actual transfer service for the management application and
agent, with appropriate interface to the underlying communications infrastructures, as detailed in
section 3.3 and 4.3 of this paper. Communication service interaction between managers typically
involves just the notification mechanisms and the protocol.

The management information model defines management information flowing between managed
objects and the manager, and is used as a template to create agents to the managed objects. The
attributes of a managed object that can be manipulated by the manager are defined in the
information model, as well as the operations of the attributes and the operations that may apply to
the managed object itself. Managed objects, events, attributes, operations, and rules for the

Working Paper 78 MR9401V2

creation of templates to be used in the creation of managed object agents are all defined by the
management information model.

The manager has many applications with which to monitor and configure systems resources
(managed objects) as required. The managed objects, through the services of an agent, react to
manager directives or requests to change the behavior of the managed object. The system works
because all managed objects, the protocols to talk to agents, and the specific information to be
shared are defined a-priori. The arrangement of the managers and managed objects usually take on
one of two predominant logically distributed architectures: either a hierarchical distribution or a
federated distribution.

Managed Objects

F
au

lt

C
o

n
fi

g
u

ra
ti

o
n

A
cc

o
u

n
ti

n
g

P
er

fo
rm

an
ce

S
ec

u
ri

ty

Managers

Functional Areas Physical
Devices

Mgmt. Applications

Communication Services

Protocol

Mgmt. Services

Agent

Appli-
cations

Operating
System

Manager/Managed Object Shared Information Model (not shown)

C N O

Figure 33. Systems Management Logical Architecture

5.2.1 Hierarchical Architecture

Figure 34 illustrates a hierarchical network of managers. In a hierarchical architecture, managed
objects typically interact with a single manager. The exchange of traffic is between the managed
objects and the manager. The management structure revolves around a management application
with remote “agents” all reporting to it. The structure is fairly rigid, and does not scale well to
larger management domains without adapting levels of hierarchy. The 'manager of managers'
resolves problems across the multiple management domains of the lower-level managers. Lower
level managers do not talk to each other without invoking the services of the higher-level manager.

Working Paper 79 MR9401V2

This approach to systems management characterizes many systems in place today. The available
technology has largely forced this approach to systems management, and does not satisfactorily
address the needs/drivers discussed in section 5.1. There are several severe widely acknowledged
deficiencies with a hierarchical architecture approach. The architecture places obvious burdens on
the highest level manager when lower-level managers cannot talk to each other for problem
resolution - causing delays and potential misrepresentation in problem resolution. A global
namespace at the top of the hierarchy must be maintained for overall system management to be
effective. The hierarchical nature of the architecture implies policy by the designation of a central
authority to oversee and control all system functions. The highest level manager can be viewed as a
single point of failure to the system. Although redundant hardware and distribution/replication of
critical files stores are provided with today's system's, spatially the highest level manager is not
protected.

Manager of Managers

Manager

Managed Object

Figure 34. Systems Management Hierarchical Architecture

Working Paper 80 MR9401V2

Manager of Managers

Manager

Managed Object

Primary Link

Backup Link

Cross Link

Figure 35. Compensated Hierarchical Architecture

Compensating the deficiencies of a hierarchical architecture to meet the ECS system needs would
result in a certain decoupling of the strict hierarchical functionality, as shown in Figure 35.
Provisioning to spatially replicate the highest level manager, or to allow direct coordination
between lower level managers without the highest level manager's intervention quickly evolves the
architecture to that of a management federation. In the example shown, the evolution to a federation
of managers becomes clear with only three lower-level managers present.

5.2.2 Federated Architecture

A representation of a federated architecture is shown in Figure 36. Federation will be essential in
large-scale distributed systems where the existence of sole ownership and control of resources
cannot be assumed. As referenced by figure 35, the only way to achieve cooperation between
autonomous systems without creating a hierarchical system is to use federation.

Manager/Monitor*

Managed Object

* Extent of system view and management authority based on policy

Figure 36. Federated Architecture

Working Paper 81 MR9401V2

In a federated architecture, managed objects have the capability to interface to any number of
managers, and not just its “parent” in the hierarchy. Unique domain managers have the capability
to establish peer-to-peer relationships, eliminating the need for a single component at the top of the
hierarchy. The actual setup is done in accordance with policy, potentially setup as memoranda of
understanding between the management domains and implemented by the administrators of the
respective domains. The advantage this approach brings to ECS is the capability for site-local
personnel with domain expertise to interact directly with each other for problem resolution, rather
than through a system-wide manager. Based on policy, this can be done with or without the
system manager's direct involvement . The system manager would have the capability to monitor
the situation, and step-in only when required.

Global namespace maintenance in a federated architecture is not required. This distributes
namespace maintenance across the enterprise, improving response time for name service access
and building in robustness.

The federated architecture emerging with enterprise management technology today allows for the
integration of legacy management solutions. The approach is similar to that discussed in 3.3,
where adapters encapsulate procedural interfaces. The ability to integrate legacy systems preserves
existing investment and provides a smooth migration path to an effective distributed systems
management architecture.

5.3 Implementation Architecture

5.3.1 Manager Architectural Alternatives

5.3.1.1 SNMP Model

SNMP was introduced in 1988 by the IETF (Internet Engineering Task Force) as its standard
management protocol (RFC 1067). Although some implementations are being developed for non-
TCP/IP transports (SNMPv2), SNMP is generally associated with TCP/IP transport. SNMP has
achieved wide-spread acceptance and implementation because it is a protocol that is inherently
simple: easy to implement with a minimal consumption of processor and network resources. The
recommended transport for SNMP is the UDP (User Datagram Protocol), a connectionless
transport which conserves network resources but is not a reliable transport. The Internet SNMP
Management Model consists of:

• a managing entity (the Network Management Station or NMS)

• a managed entity (the SNMP Agent)

• a logical information store (the Management Information Base or MIB)

The SNMP agent is responsible for responding to management operation requests received from
the NMS. The SNMP agent may also asynchronously send messages called traps to NMSs when
the SNMP agent detects a device failure or other predefined event. SNMP is the management
protocol used between the NMS and the SNMP agent. The SNMP model supports a management
information base (MIB) for a logical store of information to support network management (RFC
1213).

Working Paper 82 MR9401V2

5.3.1.1.1 Communications Model

5.3.1.1.1.1 SNMP Communications Model

SNMP consists of five message types or functions: GetRequest, GetNextRequest, SetRequest,
GetResponse and Trap. SNMP management is based on polling the agents in a network for
information. A variation of this basic mechanism is SNMP trap-directed polling, in which the
NMS polls an SNMP agent in response to an asynchronously generated alarm or trap message.
This type of polling is supported to relieve the network of the load of continuous polling. Trap
messages are not delivered reliably however, so that it is unwise to eliminate polling entirely. The
bulk transfer feature of SNMPv2, discussed next, may assist with reducing the impact of polling in
SNMP management over a large network. Basic SNMP operations are shown in Figure 37.

Control Managed
Object

Event Occured

Take this action

a. Interrupt Operation

Control Managed
Object

Here is my status

What's your status

b. Polling Operation

Control Managed
Object

Alarm (unusual condition)

Take this action

c. Trap

Figure 37. SNMP Operations Summary

5.3.1.1.1.2 SNMP Version 2 (SMNPv2)

The simplicity of the original SNMP (SNMPv1) also left some issues unaddressed, especially as
networks increased in size and complexity. SNMPv2 addressed some of these criticisms:

• SNMPv2 supports bulk data retrieval in addition to the direct device polling supported in
the earlier version. In very large and complex networks, such as ECS, this reduces load
that could adversely affect the overall state of the network.

Working Paper 83 MR9401V2

• SNMPv1 was oriented toward a centralized approach to management. SNMPv2 supports
manager-to-manager communications for better distributed management of multiple
network domains.

• SNMPv2 supports security enhancements, including controlled access to system and
device agents and DES encryption. (RFCs 1351, 1352, 1353)

Vendors are beginning to support some of the SNMPv2 features. For a distributed systems
management implementation SNMP, ECS should seek to implement as many of the robust version
2 features as they become available and are widely supported.

5.3.1.1.2 Information Model

5.3.1.1.2.1 SMNP MIB I and MIB II

The SNMP MIB (RFC 1066:1988) was originally designed to identify enough useful information
without impacting network resources. This subsequently became known as MIB I. It contained
114 pieces of information that were thought to be appropriate to managing network resources.

The relatively straightforward MIB I structure (static database with tree structure) is adequate for
many networks devices and resources. It has some potential difficulties in handling composite
device structures, where different components may require their own database models that cannot
be unified into a single MIB due to its static structure.

SNMPv2 resolves some of the above limitations. It can collect sets of data and it places intelligence
"in the network". MIB II (RFC 1213) contains 170 information items, organized into 9 groups:
system, interfaces, ip, icmp, tcp, udp, egp, transmission and snmp. The MIB structure supports
unique organizational and vendor-specific MIBs or MIB extensions for additional product-related
management functions.

5.3.1.1.2.2 RMON-MIB

RMON-MIB is a proposed IETF standard. It provides improvements in intelligent monitoring,
especially over large network implementations. It requires less network traffic and overhead than
SNMP proxy agents. It collects network information from remote devices (segments) and supports
nine attribute classes including:

• Statistics (fragments/collisions),

• History (stats over time)

• Alarms (compare current stats to thresholds)

• Hosts (information on active hosts)

• HostTopN (information on highest host in particular stat)

• Matrix (traffic between nodes)

• Filter (packet filtering by equation)

• Packet Capture (provides packet capture)

Working Paper 84 MR9401V2

• Event (controls events form a device)

An extension was also added to the RMON MIB (RFC 1513) for Token Ring support, which is
called Token Ring for events related to this topology. Extensions are being considered and
working groups are being formed for a number of other transport media, including ATM.

5.3.1.1.3 Applications Model

Numerous vendor applications that interface with the SNMP model are available today for network
management. The products work well for their intended purpose - to monitor and manage
networks. Some products are now emerging that use XMP, an X/Open branded API for support to
SNMP and CMIP/CMIS protocols. Vendor-specific GUI's are a major impediment at this time in
promoting cross-platform interoperability of vendor and third-party application products.

5.3.1.1.4 SNMP Strengths and Weaknesses

Because of its simplicity and ease of implementation, SNMP has gained and is continuing to gain
wide industry support, far greater than any other management protocol. SNMP's native transport,
TCP/IP is also gaining wide industry support. In addition, major industry players, such as Novell,
are supporting SNMP on other transports, such as IPX. Many consider that the standards body for
SNMP, the IETF, is more efficient in delivering appropriate standards in a consistent and timely
manner, that result in fairly rapid product implementations than organizations such as the ISO.

In spite of these pluses, networks and computing environments have become increasingly complex
and distributed, and SNMP, while efficient in many areas and still evolving, has limitations in
expansion toward systems management. These limitations will become more apparent through the
other architectures to be discussed.

5.3.1.2 ISO/CCITT Model

The Network Management extensions to the ISO model began in the early 80's. The initial design
phase of these extensions was not completed until nearly a decade later. (ISO/IEC 7498-4:1989).
Unlike the IETF's more pragmatic approach to identifying and solving the most critical issues, the
ISO network management model approached the problem very globally and very generally. The
OSI management components include:

• A managing system, taking the manager role, similar to an SMNP Network Management
Station.

• A management communication protocol, Common Management Information Protocol
(CMIP)

• Management Information (Management Information Tree (MIT) database)

The ISO management model provides, shown in Figure 38, provides more management flexibility
and is a more complete management structure for systems management than SNMP. Five Systems
Management Functional Areas (SMFAs) are supported by the ISO model, including fault,
performance, configuration, security and accounting. The tasks associated with each of these areas
were also identified. It became apparent that some tasks were related to more than one SMFA and

Working Paper 85 MR9401V2

the more recent OSI specifications, such as the System Management Overview (ISO/IEC
10040:1991) are evolving to a framework structure.

The ISO framework introduced the concept of administrative management domains, similar to
administrative domains found in X.400. Real systems are organized into sets to meet certain
requirements, such as fault management, or security management; to assign the roles of agent and
manager; and to establish control over the domain. The administrative domains are called functional
administrative domains by ISO.

Appendix D provides reference additional notes on the ISO/CCITT management model.

Config Fault Security
Perfor-
mance

Account-
ing

SMFA Requirements

OSI Systems Management Overview (ISO 10040)

OSI Management Framework
(ISO 7498 Part 4)

Basic Structure Standards

1 2 3 4 5 6 7

(ISO 10165, Parts 1-N)

System Management Function Standards

Managed
Object
Standards

Structure
(ISO 10164)

Info Model

Guidelines
for

Definitions

Definitions
of

Mgt. Info.

Managed Object
Definitions

(In Progress)

Communication Standards

CMIS (ISO 9595)
CMIP (ISO 9596)
ROSE (ISO 9072)
ACSE (ISO 8649, 8650)

Figure 38. ISO Systems Management Framework

Working Paper 86 MR9401V2

5.3.1.2.1 Communications Model

OSI CMIP is a connection-oriented management protocol to ensure reliable delivery. CMIP utilizes
a more complex informational model than SNMP. OSI CMIS (Common Management Information
Service) provides the management services including the following:

M-Create: Creates an MO instance record in the MIT

M-Delete: Deletes an MO instance from MIT

M-Get: Retrieve information. Aggregate (bulk) and selective (filtered) retrieval

M-Cancel-Get: Cancel retrievals

M-Set: Change an attribute value

M-Action: Invoke an MO operation

M-Event-Report: Generate an MO event report to a manager

These services extend management capabilities beyond that of the SNMP model. While there are
comparable SNMP commands to some of these CMIS Services, there are no comparable SNMP
commands for M-CREATE, M-DELETE, and M-CANCEL-GET. This has made mapping
between the two management protocols difficult. CMISE uses ISO ACSE and ROSE to support
services.

CMOT is CMIP over TCP. GDMO is well received in the Internet community and the use of CMIP
over the Internet reliable transport is required in order to have ISO-based systems management of
Internet-based resources.

5.3.1.2.2 Information Model

The ISO Management Information Model (MIM) (ISO/IEC 10165-1:1991) is based on object
oriented technologies and techniques and is a highly flexible model. This model manages
resources, such as systems, protocol layer entities, and devices, as managed object classes. Each
managed object class may include the following properties: attributes, notifications, operations and
behavior. The OBJECT_IDENTIFIER, that functions as the source/target of all CMIP data units,
is comprised of a single unit of encapsulated, self-contained properties.

The object-oriented techniques used in this model, such as inheritance (subclasses) and
polymorphism, support flexibility far beyond simple procedural models. Object Class definitions
are documented using the format of Guidelines for the Definitions of Managed Objects (GDMO
ISO/IEC 10165-4:1991). The GDMO contains a number of templates that are used to represent
specific managed objects classes and their properties. The GDMO templates define the
representation of the object classes, while its properties are represented in CMIP data units.

5.3.1.2.3 Applications Model

The five functional areas defined by ISO for systems management are fault, configuration,
accounting, performance, and security management. Fault Management is used to detect, isolate,
and repair problems. It encompasses activities such as the ability to trace faults through the system,

Working Paper 87 MR9401V2

to carry out diagnostics, and to act upon the detection of errors in order to correct the faults. It is
also concerned with the use and management of error logs. Fault management also defines how to
trace errors through the log and time stamping of the fault management message.

Accounting Management is needed in any type of shared resource environment. It defines how
network usage, charges, and costs are to be identified in the OSI environment. It allows users and
managers to place limits on usage and to negotiate additional resources.

Configuration Management is used to identify and control managed objects. It defines the
procedures for initializing, operating, and closing down the managed objects, and the procedures
for reconfiguring the managed objects. It is also used to associate names with managed objects and
to setup parameters for the objects. Lastly, it collects data about the operations in the open system
in order to recognize a change in the state of the system.

Security Management is concerned with protecting the managed objects. It provides the rule for
authentication procedures, the maintenance of access control routines, the support of the
management of keys for encryption, the maintenance of authorizations facilities, and the
maintenance of security logs. Security management is in the formative stages, but it is certain that
the standard will really extensively on the Directory Services Standards for security support.

Performance Management supports the gathering of statistical data and applies the data to various
analysis routines to measure the performance of the system. It permits analysis routines to measure
the performance of the system. It permits the use of models to determine if a system is meeting the
required throughput, providing adequate response time, approaching overload, and/or if a system
is being used efficiently.

Underlying all of the functional areas are functional standards to support the functional areas. The
current list of functional standards include:

• Object Management Function (ISO DIS 10164-1, IS in '91; CCITT X.730)

• State Management Function (ISO DIS 10164-2, IS in '91; CCITT X.731)

• Attributes for Representing Relationships (ISO DIS 10164-3, IS in '91; CCITT X.732)

• Alarm Reporting Function (ISO DIS 10164-4, IS in '91; CCITT X.733)

• Event Report Management Function (ISO DIS 10164-5, IS in '91; CCITT X.734)

• Log Control Function (ISO DIS 10164-6, IS in '91; CCITT X.735)

• Security Alarm Reporting Function (ISO DIS 10164-7, IS in '91; CCITT X.736)

• Security Audit Trail Function (ISO CD 10164-8, IS in '92; CCITT X.740)

• Objects and Attributes for Access Control (ISO CD 10164-9, IS in '93; CCITT X.741)

• Accounting Meter Function (ISO CD 10164-10, IS in '92; CCITT X.742)

• Workload Monitoring Function (ISO CD 10164-11, IS in '92; CCITT X.739)

• Test Management Function (ISO CD 10164-12, IS in '92; CCITT X.745)

• Measurement Summarization Function (ISO CD 10164-13, IS in '92,; CCITT X.738)

Working Paper 88 MR9401V2

• Confidence and Diagnostic Test Classes (ISO WD 10164-y; CCITT X.737)

• Time Management Function (ISO WD 10164-z, IS in '93; CCITT X.743)

• Software Management Function (10164-q, IS in '94; CCITT X.744)

• Performance Management Function (CCITT X.746)

The ISO architecture is object-oriented, and the functional standards are similar in scope to, and
overlap, the object services and common facilities in process of definition by OMG. Management
application vendors would seem to be backing OMG object services technology more than the ISO
system management functions. X/Open has recently branded Tivoli's Management Environment
and is in the process of refining management services that complement the set of OMG object
services. Additional discussion of this is found in the discussion of X/Open. Additional discussion
of ISO/CCITT object model reconciliation with the OMG object model is provided under the
Network Management Forum and Object Model reconciliation sections of 5.3. For detailed
information of the system management functions, the reader is directed to the ISO 10164 series.

5.3.1.3 GNMP

The Government Network Management Profile (GNMP) is a NIST document the adopts the
ISO/CCITT CMIP/CMISE protocol and services to integrate managers. CMIP/CMISE from
managers to managed objects is not specified under GNMP - only the interface between managers.
The first seven system management functions (ISO 10164-1 through -7) are specified in the
document. The focus of GNMP is to build a hierarchical network management system, and only
addresses interoperability between network management components. The specification takes a
good look at classification of managed objects, but stops short at the network level. NIST is
involved working with the NMF (see discussion below) in being an integral part with OMNIPoint
1 Specifications. Reference Notes on GNMP are provided in Appendix E.

5.3.1.4 OSF DME

The OSF Distributed Management Environment is an architecture with many distinct parts. The
basic environment, pictured in Figure 39, is comprised of Distributed Services, a Network
Management Option (NMO), and a Management Framework (MF). The MF is a component of
DME that has seen quite a bit of upheaval and duress. Originally, the MF was based on technology
from Tivoli that utilized an object framework incompatible with OMG CORBA. When it became
clear to OSF that the future of distributed systems management would be based on OMG CORBA,
OSF was faced with the challenge of making the MF CORBA compliant. After missing a few
deadlines, Tivoli dropped out of OSF and vowed to make their Tivoli Management Environment
(TME) CORBA compliant. Development at OSF continued, to the present framework today. As
can be expected, change is constant in the industry. Recently, OSF announced plans to drop the
MF component of DME. The event services of DS will be included with release 1.1 of OSF DCE,
due in September 94. The rest of the DS complement the communications sub-architecture and will
be considered as potential design implementations for some of the OMG object services (e.g.,
software licensing, software distribution). The NMO is largely available today as part of the
X/Open branded XMP API for SNMP and CMIP/CMIS access, bundled with HP, DEC and IBM

Working Paper 89 MR9401V2

network management products. Reference material of DME and its components is provided in
Appendix F.

A major announcement was made at UniForum (April 94) of the future direction of OSF. OSF is
recently talking with COSE; it is believed the forthcoming announcement will help to better align
the major consortia to aid in the streamlining of product development through to standards. Under
the anticipated scenario, COSE would identify technology problems and solicit the industry for a
solution. X/Open would brand the solution, and OSF would be the integrator/implementor. ECS
views this as a positive move on behalf of consortia in creating greater bottom-up market push of
advanced technology to realizable product that can later be standardized. HAIS is following this
activity closely.

Management User
Interface (MUI)

DME Applications

DCE & DME
Distributed
Services

S
M
S

D
F
S

E
V
S

L
M
S

S
D
S

Object Svcs

CORBA ORB XMP

DCE Executive

Operating System(s) & Network stack(s)

DME Common
Management Services

Existing
Network
Management
application(s)

CMIPSNMP

Object
Adapter

Figure 39. DME Functional Architecture

There are many benefits of DME that ECS has already drawn benefit of. The use of DS in DCE
and implementation for OMG object services saves development. The NMO XMP API, brought
about by OSF, is a major first step in integrating legacy SNMP and CMIP/CMIS network
management systems. Finally, the DME work has provided much insight to the integration of
systems management into a CORBA and OMG object services architecture, and prompted much
work within the NMF on the reconciliation of ISO/CCITT object models and the further definition
of managed objects. Another major benefit of the DME effort is the continuing development of a
management GUI (MUI) based on Motif. The MUI will be in a future enhancement of OSF's
Motif, and will enable portable third party management applications between multiple vendor
system management solutions that adhere to the MUI.

Working Paper 90 MR9401V2

The framework architecture of the MF is shown in Figure 40. The planned components supplied
with the MF included the management services and the object services - the MUI is part of Motif.
Management applications, fully portable by the adherence to standardized interfaces, are developed
by ISV's, end users, and system vendors. DCE is shown as the communication mechanism, but is
not required - the architecture is on top of CORBA. Many ORB implementations can be made
available that the MF would integrate directly onto, via the OMG object services. In the case of the
figure shown, the DCE services are abstracted into the OMG object services. Alternative
implementations would implement OMG object services in different ways, and interoperability of
the MF would not be affected.

The specific object services (ref. section 3.3) that are used for the MF include lifecycle,
synchronization, persistence, event notification, security, naming, message catalog, and time
services. The message catalog service, catalogs internationalized messages in a distributed fashion.
Identified management services that would be developed by OSF include the management user
interface, maps and collections, discovery, monitoring, domains/policy, adapter objects, and
scheduling services. The management services facilitate migration of existing legacy (network
management) applications into the MF.

Operating System and Network Stacks

TimeNamingSecurity

Object Request Broker (CORBA)

Object Services

Management Services

App1 App2 AppN

Management User Interface

Threads

Remote Procedure Call

Figure 40. DME MF Architecture with DCE Context

Working Paper 91 MR9401V2

The management user interface, previously discussed, provides tools and services needed to build
user interfaces for distributed OO applications. Important features of the MUI are the ability to
present maps, to support dialog interaction, and to separate presentation from interaction.

The maps and collections service provides uniform management of the relationships between
managed objects and are key to the integration of network and systems management. Maps and
collections frequently act as an applications primary presentation vehicle.

The discovery service provides the basis for managed resource discovery (such as new systems,
devices, etc.), and is required for NMO integration. The monitoring service provides for the
detection of state changes in managed objects, alarms, etc, and is also important for NMO
integration.

The policy service provides for the creation and management of domain-specific policy for
managed objects (such as how to treat all users in a group, all software depots of a certain class,
etc.). Adaptor objects, discussed in section 3.3, interface to the procedural interface of NMO to
provide OO interfaces to more traditional services. A final service, scheduling, provides a means to
schedule periodic and routine tasks.

The UniForum announcement should provide more light on the future direction of OSF, and which
consortia will pick up the work of DME. COSE has a systems management working group that
will likely take over the effort.

5.3.1.5 OMNIPOINT

The OMNIPoint 1 management model is associated with the Network Management Forum (NMF).
OMNIPoint stands for Open Management Interoperability Point. OMNIPoint 1 are a set of user-
specified implementation requirements, standards, testing methods and tools, and object libraries
providing an articulate path toward integrated, automated network management. The mission of
NMF can be described as one to find solutions providing widespread interoperability of
management information in order that the service needs of users of systems can be managed
effectively. The OMNIPoint program is supported by NMF, OMG, X/Open, OSF, UI, SPAG,
NIST, the OSE Workshops, and others.

The Network Management Forum (NMF) is an industry consortium which has compiled a multi-
volume set of standards, specifications and technologies for achieving open management
interoperability in the purchase or development of management applications. The NMF is working
directly with an OSF Special Interest Group (SIG) and the Object Management Group (OMG) on
object standards and interoperability to support heterogeneous enterprise management. The NMF's
OMNIPoint 1 is a compilation of standards rather than a reference technology or an true
architecture. Many DME technologies and specifications are also included in the OMNIPoint 1
specifications.

One of the critical areas that OMNIPoint is focusing on is to specify mechanisms to provide
interworking of OSI, OSF/DME MF, and OMG CORBA object models, and providing translation
tools between GDMO and IDL and the DME I4DL (Note: the I4DL conversion has probably been
dropped). Also, OMNIPoint is working with the Internet community to produce RFCs for placing
the structure for management information (SMI) from MIB II into GDMO format.

Working Paper 92 MR9401V2

As can be seen in Figure 41, the OMNIPoint model is similar to OSF DME architecture in many
aspects. Management applications achieve portability by a common interface at the user and
communications interfaces. Management services, working with OMG CORBA provide adaptation
to the legacy environment. Legacy SNMP and CMIP/CMIS applications are integrated through the
use of the X/Open XMP API. OMNIPoint actually goes further than the DME architecture by
examining integration strategies of the management information model in addition to the
communication services.

OMNIPoint acknowledges many object-oriented approaches to managing networks have been, and
will be used. The OMNIPoint model identifies components for an integration framework for users
and developers of network management systems. The focus of OMNIPoint is based on the
OSI/CCITT object model, but recognition is made to the need to interoperate with SNMP and
CORBA paradigms of network and system management. These object paradigms are continuing to
be analyzed by NMF and the OMNIPoint partners to start the specification of tools and algorithms
to map between the paradigms. A draft document comparing the OSI and OMG object models has
been developed in part due to OMNIPoint activities. Future OMNIPoint work plans include:

Common
Object
Request
Broker

User Interface

Management Applications

Alarms

API

Management
Services

Information
Services

Mgmt.
Info.
Base

Communications Services

XMP

CMIP SNMP RPC Other

Figure 41. NMF OMNIPoint Model

• Mechanisms to permit the interworking of OSI based systems with others based on
specifications such as OSF/DME and OMG/CORBA

• Notation translation algorithms and tools needed to translate between GDMO, CORBA
IDL, and DME/I4DL notation techniques

OMNIPoint additionally recognizes the need to work with importing SNMP-based management
information, and has been actively mapping OSI and SNMP MIB with Internet participants. Draft
deliverables (currently available as Internet draft RFCs) have been produced describing:

• Internet SMI MIB II in GDMO format

Working Paper 93 MR9401V2

• Internet SMI Party MIB in GDMO format

• Mapping algorithm from SMI to GDMO

• Proxy Agent specification

5.3.1.6 ODP and OMG

The RM-ODP aspects of system management are at the atomic level. The management issues
covered include object lifecycle, resource management and policy management for individual
objects. All RM-ODP objects include a management interface. Objects inherit these supporting
mechanisms to reduce programming burden.

An object performs a management function by invoking an operation on its management interface.
The stages in the life of an object include:

• creation - resources are allocated for object template

• service offer - reference to interface provided to trader

• migration - to balance load, reduce latency

• checkpointing - for recovery after host failure

• passivation - when idle to disk, reactivate when invoked

• service offer withdrawel - from trader

• termination - release resources

OMG provides these management functions in the following way:

• creation - through lifecycle service and factory objects

• service offer - inherent to trading service

• migration - inherent to lifecycle service

• checkpointing - inherent to transaction service

• passivation - programmer defined

• service offer withdrawel - inherent to trader

• termination - inherent to lifecycle service

Management objects are not presently envisioned in the OMG framework. Groups involved in
these issues include X/Open, NMF and the OSF MAN SIG. For the ODP vision of system
management to be integrated within advanced systems management architectures, management
services providing support for policy management will be required.

5.3.1.7 X/Open

X/Open Company Ltd. was founded in 1984 as an international, independent organization
dedicated to developing an open, multivendor applications environment. X/Open designed XPG
(X/Open Portability Guide) as a vehicle for implementing open systems in the real world. XPG is

Working Paper 94 MR9401V2

an evolving portfolio of application programming interfaces (APIs), protocols, and other
specifications that are supported with an extensive set of conformance tests. A distinct X/Open
trademark is carried only on those products that comply with X/Open portability definitions. The
latest release, XPG4, includes specifications covering interoperability and communications.

The X/Open's technical working groups draw on several sources--users, standards bodies,
suppliers, and various consortia--to determine the specifications, ensure that they are aligned with
relevant formal standards. When specifications are developed in advance of commercial
implementations, they are first published as preliminary specifications. Only when the
specifications have been tested and shown to be fully practical are they published as full X/Open
specifications and used as the basis for branding.

X/Open recently adopted Tivoli Systems technology as the foundation for distributed systems
management. The technology solution conforms with OMG/CORBA. The technology submitted
by Tivoli provides a stable link to a systems management framework for systems vendors and
application developers. A framework specification, which will evolve over the next year, is
publicly available. System administration applications based on the interface specification are
already being fielded. The X/Open branded architecture for distributed systems management is
shown is Figure 42.

Non-Object Interface
Object Interface

User Interface

Hosts
File

System

Data
Source

Printers

Managed
Objects

Management
Applications

Object Request Broker
(OMG CORBA)

Object Services
(OMG)

C
o

m
m

o
n

 F
ac

ili
ti

es

M
an

ag
em

en
t

S
er

vi
ce

s

•	Policy
•	Customization
•	Scheduling
•	Instance Manager
•	Collections

Figure 42. X/Open Systems Management Framework

The X/Open branded architecture is built on the OMG CORBA and Object Services, and specifies
an approach to the development of open system administration applications. A set of management
services are defined that allow management specific interfaces to be common across environments,

Working Paper 95 MR9401V2

allowing the development of heterogeneous, interoperable applications. The specific object services
deemed required for systems management by X/Open include lifecycle, event, naming,
relationship, transaction, concurrency, and security services. Management services include the
following:

• Collection Service: this service organizes objects into groups, providing the aggregation of
many-to-many relationships

• Policy-Driven Base Service: this service allows common operations to be performed on all
policy-driven objects within a system administration application. The common operations
allow objects to be managed, grouped, and named.

• Instance Management Service: this service provides the structure necessary for designing
objects to support system administration applications by encapsulating a series of client
operations.

• Policy Management Service: this service gives administrators a way to customize
applications to their specific needs.

• Scheduling Management Service: this service invokes operations at an administrator-
defined time, and is essential for the scheduling of periodic tasks

• Customization Management Service: this service allows a system administrator to
customize the behavior of their applications to suite organizational-specific requirements

The management services are key to building an application foundation so that systems
management applications and objects can be defined and built to span multiple vendor framework
implementations. The specification does not address the graphical user interface, which is being
addressed by OSF Motif's MUI, or application-specific resource interfaces (the applications
objects defined in section 3.3). Additionally, the specification does not discuss information model
aspects of systems management (work in progress with ISO GDMO, NMF, and OSF MAN SIG).

5.3.2 Managed Object Alternatives

5.3.2.1 Managed Object Working Group Activities

There is considerable activity in the definition of managed objects. The major consortia outlined in
section 5.3.1 are working in this area, either directly or indirectly. The activities of several of these
workgroups are outlined in this section.

5.3.2.1.1 IETF Host Resources MIB (HostMIB)

The IETF Host Resources MIB Working Group defines a UniForum MIB for objects useful in the
management of hosts. The source MIB can be translated into GDMO according to ISO/CCITT
Internet Management Coexistence (IIMC) translation rules. Work is in progress, including work
with the DSIS and DMTF groups outlined below to support SNMP management of (PC) desktop
objects defined by these organizations, described below.

5.3.2.1.2 D S I S

Working Paper 96 MR9401V2

Distributed Support Information Standards Group has a requirements specification that identifies
data necessary for organizations performing service, support, and management activities for
networked systems. The DSIS is developing object definitions for desktop devices and subsystems
to populate a management information file that works like a Management Information Base (MIB)
to detail pointers to relevant information. It is expected that the DMTF API will access information
defined by the DSIS group. These definitions will include the name, vendor, model, and location
of desktop components, including NICs, modems, drives, and video gear for PCs.

5.3.2.1.3 DMTF

The Desktop Management Task Force has work ongoing in defining related common management
definitions in the Management Information Format (DMI MIF). It is expected that the DMTF will
address the object definitions specified by DSIS. DMTF is working with the IETF Host Resources
MIB (HostMIB) working group to ensure desktop objects will be manageable under SNMP. This
may be provided by an API and or gateway implementation. The work has support for PC LAN
devices and desktops from a number of major vendors. Submission to or support for major
management standards have not been announced, although some support vendors believe SNMP
support is critical to acceptance.

5.3.2.1.4 IEEE

Work is on-going in POSIX operating system managed object definitions and storage related
managed objects in Mass Storage Reference Model. The current work on POSIX 1003.7 (recently
renamed POSIX 1387) (System Administration areas, such as user-account management, software
distribution, devices, file systems, processes and backups, etc.) assumes that a framework will be
available to provide common services across platforms. The committee does intend to address an
API to this framework, but expects the framework to be provided by organizations such as OSF,
Tivoli, ISO and other standards organizations. It is expected that the interface will support the
managed object definition standards supported by these organizations, which have been described
in previous sections.

5.3.2.1.5 Unix International

Unix International (UI) was working the definition of performance and configuration metrics for a
Performance Measurement Data Pool requirements definition. UI disbanded in December, it is not
known if this work was transferred to another organization.

5.3.2.1.6 OSF Management SIG

The Hilton Head Object Group (HHOG) is a forum in which the OSF Management Special Interest
Group (SIG) can test its current work on a standard object model. The OSF Management SIG has
various task forces trying to define common object definitions in the areas of operating systems,
license management, network events, and even the management of DME itself. The SIG is using
as the basis for this work the International Standards Organization's (ISO's) Guidelines for the
Definition of Managed Objects (GDMO) language, which is backed by the NM Forum. The
GDMO definitions are intended primarily as a reference specification that can be used to create

Working Paper 97 MR9401V2

mappings in more widely used languages, particularly the OMG's Interface Definition Language
(IDL). X/Open's anticipated role will be to manage the specification.

5.3.2.1.7 OMNIPOINT

As previously discussed, OMNIPoint future work plans include:

• Notation translation algorithms and tools needed to translate between GDMO, CORBA
IDL, and DME/I4DL notation techniques.

Draft deliverables (currently available as Internet draft RFCs) have been produced by OMNIPoint
describing:

• Internet SMI MIB II in GDMO format

• Internet SMI Party MIB in GDMO format

• Mapping algorithm from SMI to GDMO

• Proxy Agent specification

OMNIPoint is additionally supporting work in the integration of the OSI/CCITT and OMG object
models.

5.3.2.2 Relationships of Managed Object Working Groups

Table 5 presents a tabular summary of the current work in progress within the managed object
working groups of several prominent organizations involved with system management.

Table 5. Managed Object Definitions in Work
Host
MIB

DSIS DMTF I E E E UI OSF/MS NMF ISO

Managed System N N Y N Y N Y Y

Hardware (See GDMO Hardware Managed Object Specification)

Physical Devices Y Y Y N N N ? N

Operating System Y Y Y N Y Y ? N

Logical Devices N N Y? Y Y? N N N

Processes Y Y Y N Y Y N N

File System Y Y Y N Y? Y N N

Software Y Y Y Y N N ? Y

Application N N N N N Y N N

Queue N N N N N Y N N

Queue Entry N N N Y N Y N N

Users Y N N Y N Y N N

Working Paper 98 MR9401V2

5.3.3 Systems Management Sub-Architecture Discussion

5.3.3.1 Object Model Reconciliation of OMG and ISO/CCITT

The NMF took on with OMG the task of comparing the OMG and ISO/CCITT object models. The
promising architectures discussed in this paper all are looking to CORBA and the OMG object
services as the advanced infrastructure on which to build a federated, large scale distributed
systems management system. The managed objects, however, are almost all being defined in
GDMO. A method to map GDMO objects onto the OMG IDL is therefore required. This section
compares the object models developed by OMG for object oriented software development and
ISO/CCITT for OSI network management. It identifies areas of conflict in the two models and
provides alternatives and strategies to reconcile differences. Detailed information of the object
model comparison can be found in the February 1993 Report of the Joint NM Forum/OMG
Taskforce on Object Modeling entitled "Comparision of the OMG and ISO/CCITT Object Models".

According to the report, there is an high degree of agreement between the basic aspects of the two
models. The fundamental notions of objects, object taxonomy, attributes, operations, state,
behavior, and encapsulation are virtually identical. The conclusion is very important for the
realization of OSI-conformant network management products using OO-software development
systems, like CORBA. Because the models are so close, less actual translation code will be
required to bring GDMO-defined managed objects and applications into CORBA, improving
accuracy and robustness of implementation.

There are some significant differences, however. The models differ in three significant aspects; the
support for events, multiple replies, and late binding. A number of less important aspects differ as
well, such as specification techniques and associative references, but these are not major issues. In
two ways, the differences in the two models actually are reported to complement each other - in
interface type and intended use. The fundamental differences will require reconciliation in order for
ISO/CCITT and OMG object models to interwork.

The report discusses three approaches for reconciliation. These are model alignment, run-time
mediation between implementations of the models, and notational mapping tools. Notational
mapping tools is the current path selected by NMF in its workplans with OMNIPoint. Total model
alignment is impractical given the depth of backing and years of effort each model has behind it,
but the development of flexible profiles to minimize the differences is highly recommended (and
currently in work). Run-time mediation would require the development of extra software to match
differences in the specification (the ISO/CCITT model), and the implementation (OMG model).
This could happen in the future. Notation translation tools involves syntax checkers, data-structure
generators and ASN.1 compilers for semi-automatic translation between the two models. Fully
automated translation is never expected.

5.3.3.2 Framework Architecture

Five major distributed systems management architectures were presented that have the potential to
provide to ECS a truly distributed and federated systems management solution. The primary
features of each architecture are discussed below.

Working Paper 99 MR9401V2

The DME architecture, while no longer in development, offered many good concepts on the
integration of legacy management applications. This was reflected in the selection of the
management services, including the discovery, monitoring, maps/collections, and adaptors. The
MUI is a very important concept to effect maximum portability of management applications, both
now and for the future. The recommended object services matched those of X/Open, and further
suggested that time and persistence services would be beneficial to management services. The
focus of DME was to provide a total Open Management Environment - a shared goal at COSE.
This may not be possible even for quite a long time. The X/Open specification for an OO system
administration environment does not discuss integration with the legacy environment and the final
X/Open specification is not due for another year.

The OMNIPoint framework is a very useful architecture through the inclusion of all aspects of
distributed systems management - the communications model, information model, and
management application model. This and the ISO model shared many features, integrated on a
commercially viable communication infrastructure - the OMG CORBA. The efforts in NMF for
unification/reconciliation of GDMO with CORBA IDL and IETF is to be commended.

The ISO framework is relevant to ECS largely in the information model, but the communication
model and application framework at the system management functions level (ISO 10164-1 through
-n) will likely never happen. While FCAPS (fault, configuration, accounting, performance,
security) is a useful classification of the system management responsibility space, alternative high
level classifications are appearing based on a bottom-up product development integrated on OMG
object services, consortia common facilities, and X/Open and DME management services. The
work of OSI in response to this will need to be re-examined and NMF responses will need to be
made known. The classification of managed objects using the GDMO templates should continue to
be the predominant foundation to a system management information model.

Common
Object
Request
Broker

User Interface

Management Applications

Alarms

API

Management
Services

Information
Services

Mgmt.
Info.
Base

Communications Services

XMP

CMIP SNMP RPC Other

Figure 43. NMF OMNIPoint Framework Architecture

Working Paper 100 MR9401V2

Based on the UniForum announcement, the consortia may be much better aligned to serve end-
users by identifying promising technologies and holding fast to it straight through to the standards
committees. If X/Open is to be truly recognized as the official branding body, then it's
endorsement of Tivoli's CORBA-compliant management environment is a very strong sign of the
management services on which to base OO system management applications. The X/Open
management services for policy and customization take a refreshing look at a administrator-centric
approach to management that could well prove to be the correct approach. What is lacking in the
X/Open specification is compensated for by the other architectures - MUI from OSF Motif,
Information Model from NMF and ISO, and communications model of OSF DME. The overall
integrating architecture of the NMF accommodates the 'best-of-breed' from each of these
architectures and is recommended as the ECS framework (implementation) architecture for systems
management. It is shown again here in Figure 43.

5.3.3.3 Aspects of Systems Administration

5.3.3.3.1 System Administration Service

Figure 44 is provided to show how a main user interface for a system administrator might appear
in the distributed systems management architecture. The functional requirements (fault,
configuration, etc.) appear as applications available to the administrator. Collections or single
objects could be queried, controlled or acted on by the administrator applications. Each of these
applications would be based on an object-oriented database of objects developed with System
Management Infrastructure objects. COTs databases that comply with the Query and Persistence
Services would be used.

CollectionService

Workstations

Mainframes Pcs

Users

Collection
Iterator

SysAdmin
Server

Query Persistence

for storing
objects

for retrieving
objects

SysObject
Database

Inventory

UserAdmin

SystemMonitor

ConfigControl

Disks

Figure 44. System Administration Service

Working Paper 101 MR9401V2

5.3.3.3.2 Managed Objects in the OMG Paradigm

The management services branded by X/Open provide the fundamentals for logically modelling or
physically storing objects for management purposes. These services define the operations that all
managed objects can inherit and implement. Managed objects provide a model of the physical
resources that are defined within the bounds of a system, and are subject to the policy of the region
to which they are a part.

A region is comprised of managers and managed objects controlled by policy objects. One of the
many resources in a region is a node. A node is a manager object comprised of possibly many
capsules, created by factory objects. A capsule contains a nucleus object which provides uniform
access to facilities and resources (such as processing, memory and communications) provided by
the underlying operating system (see Appendix A for more detail).

Manager

Managed

Region Policy
defines

Node

Capsule Factory

Nucleus Object

created by

Denotes
Inheritance

Denotes
Aggregation

manufactures

Export
Policy
Controller

provides policy,
load balancing and
dynamic properties

exports services to

Trader

Figure 45. Management Infrastructure Objects

Managed objects export their services to a Trader object to register them in a systems offer space.
ExportPolicyController objects interact with a Trader to enforce a region's policies whenever local
services are provided. The associations of the manager, managed object, and trader are shown in
Figure 45.

Policy may used to control the general activities of objects in a region. Figure 46 is an example of
how local policy might direct an unused service to passivate to disk to save system resources.

Working Paper 102 MR9401V2

Capsule

Policy

Manager

Managed
object

Persistence

Object

rule: if not active,
passivate

passivate

passivate

Figure 46. Example of Policy to Conserve Resources

5.3.3.4 Management Application Classes

System Management refers to the configuration, control, and change of computing hardware,
operating systems, and software applications. The following list identifies many of the functional
requirements for the domain of Systems Management:

• Configuration Management

• Performance Management

• Accounting Management

• Software Management

• Fault Resolution Management

• Security Management

• Printer Management

• Backup and Restore

As previously discussed, the primary SMFA's defined by ISO are evolving. The list presented
above is the list of equivalent SMFA's from the X/Open literature. These classes represent an up-
to-date mapping of major system management responsibilities.

Ongoing analysis is required to analyze these primary system management application classes and
better understand the required functionality within each application class. This will be
accomplished through both a top-down specialization of the ISO SMFA's and the DID216, and a
bottom-up generalization of the proposed object and management services of OMG, OSF DME,
ISO and X/Open.

Working Paper 103 MR9401V2

5.3.3.5 OMG Object Services

The OMG object services recommended at this time is a composite of the object services required
for both the DME and X/Open systems management architecture. These services include event
notification, lifecycle, naming, persistence, synchronization, time, security, message catalog
service (internationalization), relationships, concurrency, and transactions. This initial set will be
mapped against availability from OMG and discussed along with the applications classes and
management services in the next version of this paper. In parallel with the phasing analysis,
continued analysis of all services will progress.

5.3.3.6 Management Service Classes

The recommended management services in the X/Open document included policy-driven base
service, instance management service, policy management service, scheduling management
service, and customization management service. These management services, the major ISO
SMF's and the DME management services all previously discussed will be analyzed for potential
inclusion to meet ECS systems management requirements. An example of a possible use of the
X/Open collection service is provided below.

A Collection Service defines operations required to have two way reference relationships between
objects. A collection allows logical groupings of objects to be queried or have operations applied.
In a collection relationship, all collected objects know of all collections to which they are members,
and all collections know of all objects collected in the collection. Each participant in the relationship
maintains a set or list of the other participants in a relationship.

Because collections can refer to other collections, they can be organized into hierarchies. In
addition, because collections are just groups of references an object can belong to any number of
collections. The collection service is shown in Figure 47.

Working Paper 104 MR9401V2

Collection
Service

Collection

CollectionMember

Collection c lass
provides ownership
semantics.

CollectionMember
class provides
owned-by
semantics.

(User X can use machines ...)

(Machine X can be used by.. .)

Naming
Service

to provide naming
hierarchies

Relationship
Service

to distiguish a
relationship between
objects

Figure 47. Collection Service

5.3.4 Managed System Object Classes

There is a growing consensus that the general GDMO model and format will provide a widely
accepted and extensible model for managed objects. This type of model is useful in an integrated
Framework architecture used for managing a large and diverse environment, such as ECS. This
model is recommended for the systems management sub-architecture. Other organizations,
including the ISO, CCITT, ANSI, IEEE, OSF, UI, X/Open, implementor's workshops (OIW)
and even IETF, currently support the model. The GDMO model's support for true object-oriented
mechanisms, including sub-classing (inheritance) and polymorphism have given management
designers the flexible tools necessary to adequately manage of the array of resources in a large
enterprise with thousands to thousand-millions of heterogeneous devices, hosts, operating
systems, data objects and software objects. While this work is relatively recent, it is occurring
rapidly in many areas. Management of many physical devices, which are integrated into another
devices, such as disk drives, were previously believed to be unmanageable. Logical devices, such
as file systems and processes, also presented a management challenge, with more complex
relationships, states and transitions.

The primary managed system object classes will require additional analysis, but seem to center
around the physical device class, the operating system class, and the application class. The
physical device class defines the physical devices within the managed system. These are primarily
based on the IETF HOSTMIB. This definition would need to be extended to cover the Display

Working Paper 105 MR9401V2

Adapter, Disk, Network Adaptor, Printer, Processor, and Tape. The work done by DSIS is
promising for these extensions.

The operating system class is fully defined for Unix by the GDMO Operating System Managed
Object Specifications (OSMOS). It will inherit information from the HOSTMIB system table. The
current definition covers most of the DSIS system attributes. It will support the UNIX Operating
System as a subclass, inheriting characteristics from the higher-level Operating System class. The
operating system class includes logical devices, processes, file systems, and software. Logical
device work is ongoing to provide a mapping between logical devices, device drivers and mass
storage. The mass storage work is in work by the IEEE Mass Storage working group. Processes
defines running processes and is full defined in the GDMO Process Managed Object Specifications
(PROCMOS). It also meets DSIS requirement, with certain exceptions. The file systems sub-class
defines both local and remote file systems, and is fully defined by the GDMO File System
Managed Object Specifications (FSMOS). It inherits information from the HOSTMIB. It also
meets DSIS requirement, with certain exceptions. The software sub-class covers the concept of
installed (i.e. dormant) software. It is primarily being worked on by POSIX 1003.7 and ISO. It
should also inherit characteristics from HOSTMIB. This is also expected to cover the DSIS
Registered File requirements.

The Application class of the managed system describes an application that can be run (even if it is
not actually running). In that respect, it differs from a process, which only exists while the process
actually exists. It has relationships to the underlying process(es) used to execute the application. It
is expected that there will be a number of specializations made for specific applications such as
backup/restore, or a print spooler application. A queue is a type of application. The managed object
represents those aspects of a queue which are generic, but which would be inherited by specific
queues, such as a spooler queue. This also covers the DSIS Print Spool queue requirements. The
queue entry is a type of queue, and represents the generic aspects of an individual entry in a queue,
such as a print request.

5.4 Issues

The major issues of large-scale distributed systems management have to do with performance,
security, and policy. Performance, or lack thereof, will be a key challenge for the number of
objects that require tracking in the ECS environment. Care will need to be taken with
implementation to ensure choke points are designed into the system that would overload and impact
system performance of the systems management coordination sites. The intelligent selection of
node managers and cluster managers within an instance of a managed system can help alleviate this
problem.

The system administrators will have an substantial amount of power at their consoles. Security
precautions should be tight, and personnel must be trusted. The security design, due at PDR + 2
months, will need to fully examine the scope of distributed authority and understand the
implications of safeguarding critical information dynamically distributed about the ECS.

The architecture as presented is policy-neutral. This will not be the case as the architecture
transitions into design and implementation. This point in the ECS lifecycle is the critical point to
make policy decisions that could have substantial impact to the cost and schedule baseline. These

Working Paper 106 MR9401V2

decision points must be discerned and brought forward to ESDIS for resolution. Some of the high-
level policy decisions that affect design include the placement of management authority, access
considerations based on the generalization/specialization of user classes, configuration management
practices, and the federation of administrative domains through contracts.

The placement of management authority examines who will have the authority to do what, and at
what time (when). A possible approach to the problem might be to examine the major service
classes and the major user classes, and make decisions of access to the services by the types of the
user class. Systems management will be built on the concept of administrative domains. The
domains are not necessarily the same for a given service type or user type. For instance, if a
scientist should be able to traverse all DAACs of ECS without ever thinking about the resource
costs, then an administrative domain can be set up for that user class (who may well be in a class
of their own). Security, directory, and access control lists can be set up to accommodate the user
class based on the policy decision made. A secondary policy decision based on this example would
be this - if a user class has access to all sites, who actually has the authority to update the security,
directory and access control lists at the sites the user is expected to visit? Each individual site, or
GSFC? These are difficult issues, but decomposing the problem into class of services for classes
of users may be a good place to start.

This same approach can help in the area of user account administration. Systems management will
provide flexibility to aggregate users into logical groups, each group with unique implementations
for user account structures, access capabilities, account credits, and password administration
techniques. As heard at SRR, no scientist is going to want to fill out a registration form.

Working Paper A-1 MR9401V1

Appendix A. Open Distributed
Processing (ODP) Discussion

A.1 Introduction

The fast growth of distributed processing in the industry has created an urgent need for a
coordinating framework for the standardization of Open Distributed Processing. The concept of
distribution is no longer limited to distributing information, but instead it has become a concept for
the distribution of services and applications. In order to integrate service distribution, service
interoperability, and service portability and to achieve the support for more advances in the
capability, ODP logical framework architecture focuses on services as a collection of objects and
building in numerous forms of transparency for technology insertion. ODP uses the existing
standards (e.g. OSI standards) and introduces new constructs such as enterprise language,
information language, computational language, engineering language, and technology language. In
addition to the specification of ODP functions, the viewpoint languages, as illustrated in Figure A-
1, can be used in new standards.

A.2 Reference Points

ODP defines four types of reference points, which exists at any interface of any object. They are:

• Perceptual reference point at which there is some interaction between the
computerized part of the system and the outside world. This may be a human interface or a
collection of robotic sensors and actuators. This reference point, for example, may be
established in a graphics standard.

• Interworking reference point at which a communication interface can be established
between systems, such as interconnection of physical media.

• Interchange reference point at which an interface to an external physical storage
medium can be established.

• Programmatic reference point at which a programming interface can be established to
allow access to a function. Example could be a notion of applications programming
interface.

Working Paper A-2 MR9401V1

Enterprise Information Computational Engineering Technology

L L L L Lent info comp eng tech

Consistancy

Consistancy

Unify

Unify

Requirements
Specifications

Implementation
Specifications

Figure A-1. ODP Viewpoint Languages

A.3 ODP Viewpoints

A viewpoint is an abstraction mechanism which allows a perception of a system which emphasizes
a particular concern, while ignoring other characteristics that are temporarily irrelevant. The RM-
ODP recognizes five viewpoints:

• Enterprise Viewpoint: concerned with the social, managerial, financial, and legal
policy issues which constrain the human and machine roles that comprise a distributed
system and its environment

Working Paper A-3 MR9401V1

• Information Viewpoint: concentrates on information modelling, flow and structure,
and information manipulation constraints

• Computational Viewpoint: focuses on the structure of application components and the
exchange of data and control among them

• Engineering Viewpoint: concerns the mechanism that provide distribution
transparencies to application components

• Technology Viewpoint: focuses on constraints imposed by technology, and the
realized components from which the distributed system is constructed

The ODP work recognizes that viewpoints do not comprise a layered architecture. There is no
inherent ordering among the viewpoints and there is no implied methodological sequencing.
Viewpoints are qualitatively different from on another. The computational, information, and
enterprise viewpoints are often used to derive the programming interface.

A.4 Benefits of ODP Standards

Using these ODP standards, the enterprise, the system implementor, the end-user etc., can benefit
with the:

• provision of availability, reliability and fault tolerance;

• reconciliation of constraints on the location of users with constraints on the location of
computing resources;

• integration of systems with different resources and different performance;

• improvement in performance as a result of parallel operation of different applications or
parts of a given application;

• provision of modularity that allows incremental growth without impacting existing
applications;

• provisions for sharing, integration or partitioning of resources and applications across
different systems, management domains and locations in response to user needs;

• provision for the containment of cost and risk with new modules for load balancing and
dynamic reconfiguration;

• distribution of system management by allowing decentralized management environment;

• provision of security including authentication and access control facilities;

• maintenance of data integrity and consistency, auditing, software development engineering
tools to support the development of distributed applications.

The most important benefit for using ODP standards is a provision for masking the technical
details of distribution from application programs covering:

• access transparency - masks differences in data representation and invocation
mechanisms between heterogeneous computer architectures

Working Paper A-4 MR9401V1

• location transparency - masks changes in configuration of application components,
and enables the transfer of configuration-independent interface references between
components,

• replication transparency - hiding the effect of multiple copies of services and
information,

• concurrency transparency - masks the scheduling of invocations of operations that act
on shared state

• federation transparency - masks interworking boundaries between separate
administration domains and heterogeneous technology domains

• liveness transparency - masks the automated transfer of components between active
and passive states

• migration transparency - masks the dynamic relocations of components from both the
components themselves and their clients

• failure transparency - masks recovery of failed components,thereby enhancing fault
tolerance

• resource transparency - masks variations in the ability of the local ODP infrastructure
to provide the resources for an application component to engage in interactions with other
remote components

A.5 Engineering Model

The engineering model of ODP is especially relevant to the communication and systems
management architecture. Interaction between two basic engineering objects in different address
space requires a configuration of engineering objects called a channel. A channel is the medium
through which remote interactions pass. Figure A-2 is a simplified view of a channel, other objects
may be involved depending on the level of transparency required.

Working Paper A-5 MR9401V1

Client Side Server Side

Client
Basic
Engineering
Object

Client
Stub
Object

Client
Binder
Object

Client
Protocol
Object

Cluster
Manager

Supporting
Object

Interceptor

Server
Basic
Engineering
Object

Server
Stub
Object

Server
Binder
Object

Server
Protocol
Object

Cluster
Manager

Figure A-2. Simplified Engineering Model

Distribution transparency is provided through the contribution of stub and binder objects. Binder
objects control the binding of server interface for a client interface. Subtypes of binders provide
location transparency, replication transparency, failure transparency, migration transparency and
resource transparency. Stub objects differ from binder objects in that the actually modify the
information exchanged across the channel. Subtypes of stub objects provide concurrency and
access transparency.

The protocol objects hide the actual communication mechanisms between systems. The interceptor
objects lie at administrative or technology boundaries and provide protocol and type conversions.

A node in RM-ODP is a group of engineering objects that share common processing, storage and
communication resources. A node can contain one or more capsules. Capsules correspond to
address spaces and are created by a factory object and managed by a nucleus object. RM-ODP
capsules are the OMG equivalent of an Object Adapter. An Object Adapter viewed this way would
be precluded from running across more than one node. The nucleus object is responsible for
establishing channels and for the creation of threads. The nucleus object must be statically
connected to a trader which may actually reside at another node. The ODP nucleus is an OMG
equivalent of an ORB.

Working Paper A-6 MR9401V1

Node

Capsule CapsuleCapsule

NucleusFactory Trader

 Node
Manager Assorted

Protocol
Objects

Figure A-3. ODP Node

Cluster objects are basic engineering objects grouped as units of activation, deactivation and
migration and correspond to a segment in virtual memory systems. The interfaces for these objects
must be bound to each other or to channels. These clusters may be instantiated through templates
into a capsule. A cluster manager is required for every cluster and every capsule requires a capsule
manager. The capsule and cluster managers provide instantiation, activation, deactivation,
reactivation and checkpointing of the clusters.

Working Paper A-7 MR9401V1

Cluster

Basic
Engineering
Object

Basic
Engineering
Object

Basic
Engineering
Object

Basic
Engineering
Object

Basic
Engineering
Object

Binder
Object

Binder
Object Binder

Object

Cluster
Manager

Cluster
Manager

Capsule
Manager

Stub
Object

Stub
Object

Stub
Object

Cluster

Capsule

Figure A-4. ODP Capsules and Clusters

Working Paper B-1 MR9401V1

Appendix B. OSF Distributed
Computing Environment

B.1 Introduction

Distributed Computing Environment (DCE) is an enormous software system from the Open
Software Foundation (OSF), embodying some novel and complex concepts. It provides most
reliable and cost-effective services and tools that support the creation, use and maintenance of
distributed applications in a heterogeneous computing environment. Location transparency,
Database and user interface consistency, effectiveness in terms of speed of response and
extensibility, reliability, fault tolerance and recoverability, security, availability, data and resource
sharing, interoperability are some of the key benefits of using OSF distributed computing
environment (DCE).

DCE is based on three distributed computing models: client/server, remote procedure call, and data
sharing. The following sections briefly describe each model.

B.1.1 The Client/Server Model

Distributed systems rely entirely on computer networks for the communication of data and control
information between the computers of which they are composed. Client/Server computing results
when you establish a set of procedures or subroutines as an independent program (server) on one
machine and make it possible for client programs on possibly other machines to invoke the
procedures, much as if they were local to the client program. As illustrated in the following figure,
typically the client side of the application resides on the node that initiates the distributed request
and receives the benefit of the service. The server side of the application resides on the node that
receives and executes the distributed request.

CLIENT NETWORK SERVER

Sends request for
service and waits
for reply.

Transmit request

Transmit reply

Receives request

Executes request

Sends reply
Receives reply and
 continues

Figure B-1. Client/Server Model and Sequence of Communication

Working Paper B-2 MR9401V1

It is important to note that the terms client and server should be viewed as relative roles rather than
as absolutes. In other words, server for one request from a client, itself can be a client to another
server for different request and vice versa. For instance, client communicates to print server to
print a file. This print server could be a client to a file server to get the file for printing. Typically,
many nodes need to be able to run the client side of an application, whereas only one or two nodes
may be equipped to run the server side of an application. The DCE services are themselves
examples of distributed programs with a client and a server. The basic communications mechanism
described next assumes the presence of a client and a server.

B.1.2 The Remote Procedure Call (RPC) Model

In this model, the client calls a procedure on a remote machine as if it were a local procedure call.
RPC provides a high-level programming model to the distributed application programmer, hiding
communications details and removing non-portable system and hardware dependencies. RPC also
converts data to and from forms required by different kinds of hosts and it manages automatic
recovery from network or server failure. DCE RPC, is an implementation of this model. Most of
the other DCE components use it for their network communications.Following Figures illustrates
this model.

Application

Subroutine

Application

Subroutine

Network

SubroutineSubroutine

Figure B-2. Remote Procedure Call

DCE RPC facility consists of both a development tool and a runtime service. The development
tool consist of a language(and its compiler) that supports the development of distributed application
as illustrated in the following figure. The runtime service implements the network protocols by
which the client and and server sides of an application communicate. DCE RPC also includes
software for generating unique identifiers, which are useful in identifying interfaces and other
resources.

Working Paper B-3 MR9401V1

Application
Code

Procedures

Call end

Client
Stub

Prepare
input

Convert
output

RPC
Runtime
Library

Transmit
input

Receive
output

Execute remote
 procedure

Server
Stub

Convert
 input

Prepare
output

Transmit
output

RPC
Runtime
Library

Role of RPC InterfaceFigure 3.2.4.2 (B)

Call begin

1

2
8

9

3

4

5

6

7

Figure B-3. Role of RPC Interface

 The DCE RPC is made up of interface definition language (idl), uuidgen utility, runtime library
routines, error-handling routines, rpccp and rpc deamon.

B.1.3 The Data Sharing Model

Some of the DCE services are based on the data sharing model, in which data is shared by
distributing it throughout the system. Data sharing focuses on distributed data rather than
distributed execution. Data sharing usually entails having multiple copies of the same data. DCE
includes mechanisms for keeping copies of data consistent. Furthermore, it takes care of
synchronizing multiple access to data. Two DCE services are based on the data sharing model.
Directory Services (CDS and GDS), maintain caches on the client. The caches contain copies of
data that users on the client have recently accessed. Subsequent access to the data can be made
locally to the cache, rather than over the network to the server. Distributed File Service (DFS) is
also based on the data sharing model. A DFS client maintains a cache of files that have recently
been accessed by a user on the system. DFS server distribute and revoke tokens, which represent a
client's capability to perform operations on files. Through careful token management, the DFS
server can ensure that its clients do not perform conflicting operations or shared files, and that they
do not see inconsistent copies of the same file. With this model, a user anywhere in the distributed
system can share data by placing it in the namespace or in a file, whichever is appropriate for the
application. Data sharing like RPC, enables users and programmers to communicate transparently
in a distributed system. Figures B-4 and B-5 illustrate the data sharing model.

Working Paper B-4 MR9401V1

FILE

SYSTEM

FILE

FILE

SYSTEM

SYSTEM

NFS

NFS

Server

NFS

Client

Client

application

application

application

Database system

kernel
RPC

kernel
RPC

Database system

Database system

Computer A

 Figure B-4. Data Sharing Model in a closed system.

FILE

SERVER

Database System

application

user package

application

user package

RPC

RPC

RPC

Computer A

Computer B

Computer C

Computer D

 Figure B-5. Data Sharing Model in a distributed system.

Working Paper B-5 MR9401V1

DISTRIBUTED APPLICATIONS

Other Extensions/Additions
• Asynchronous and ORB Message Transfer
• Load Balancing & Generic Installation
• C++ and other coding binding & interpreters
• On line transaction programming (OLTP/ENCINA)

DISKLESS
SUPPORT

DCE EXTENDED
SERVICES (FUTURE)

DISTRIBUTED FILE SERVICE

Distributed
Time Service

DIRECTORY
CDS X.500

Other basic
Services-Future

S
E
C
U
R
I
T
Y

M
A
N
A
G
E
M
E
N
T

DCE REMOTE PROCEDURE CALL

DCE THREADS SERVICE

OPERATING SYSTEM

NETWORK TRANSPORT SERVICES

Figure B-6. DCE Architecture

Working Paper B-6 MR9401V1

B.2 Architectural Overview of DCE

OSF's DCE is a layer between the operating system and network, on one hand, and the distributed
application on the other. DCE, as a layer of software, provides the services that allow a distributed
application to interact with a collection of heterogeneous computers, operating systems and
networks as if they were a single system. Figure B-6, one conceptual model of DCE, shows the
relationship of the DCE distributed services (Security, Directory, and time) to RPC and Threads
services.

DCE Threads supports the creation, management, and synchronization of multiple threads
control within a single process. Threads on a client can control separate remote procedure calls to
various server hosts on the network. Threads on a server enable the server to handle multiple
client requests concurrently.

The idea behind DCE Remote Procedure Call(RPC) is simple: to allow a program to call
procedures in a different computer or in a different address space in the same computer. The rpc
call is sent in the form of a request message to a remote process that is able to receive the call,
execute the procedure and send back a reply message.

The DCE Directory Service is the central repository for information about resources in the
distributed system. Typical resources are users, machines, and RPC-based services. Both
CDS(Cell Directory Service) and GDS(Global Directory Service) are accessed using a single
directory service application programming interface API, the X/OPEN Directory Service(XDS).

The Distributed Time Service provides synchronized time on the computers participating in a
Distributed Computing Environment. DTS synchronizes a DCE host's time with Coordinated
Universal Time(UTC).

The DCE Security Service provides secure communications and controlled access to resources
in the distributed system. These services are comprised of Registry service, authentication service,
the privilege service, the access control list facility and login facility.

The DCE Distributed File Service(DFS) allows users to access and share files stored on a
File Server anywhere on the network, without having to know the physical location of the file.The
DFS achieves high performance, particularly through caching of file system data.

The DCE Diskless Support Service provides the tools that allow a diskless node to acquire an
operating system over the network, obtain configuration information, connect to DFS to obtain the
diskless node's root file system, and perform remote swapping.

The DCE Management shown in the figure B-6 is not a single component, but a cross section
of the other components. Each DCE service contains an administrative component so it can be
managed over the network.

B.3 Motivation for using DCE and industry support justification

DCE provides interoperability and portability across heterogeneous platforms. In Europe and Asia
many companies are utilizing DCE's DFS and GDA features very widely. Any computing
organization comprising several cooperating hosts can benefit greatly from the administrative

Working Paper B-7 MR9401V1

support afforded by a DCE environment. For example, in DCE the database of computer users and
their associated information (such as passwords) can be administered centrally, removing the need
for an administrator to update information on every single node in the network each time a new
user is added. Beyond HP, IBM, and DEC, many companies such as Attrium, Tivoli, Hal PC,
Transarc, Ellery, and OEC, are providing tools and libraries to DCE, furthering the rationale for
selection of DCE as a foundation for advanced distributed processing.

Working Paper C-1 MR9401V1

Appendix C. SNMP Management Notes

C.1 SNMP MIB
uses a tree to store managed information

is static database, MIT is determined at design time. Potential difficulties in handling composite device
structures, where different components may require their own database models that cannot be unified into
a single MIB due to its static structure

No means to directly define relationships between MIB entries

SNMP v.2 resolves some of the above limitations. It can collect sets of data and it places intelligence "in
the network"

C.2 RMON
IETF developed, has three parts

* SMI, describes and names objects to be managed

* MIB, defines attributes and info regarding SMI objects

- MIB1 and MIB2 are internet standards

- Private MIBs may exist

- RMON MIB provides distributed monitoring and analysis

* SNMP, communications mechanisms between agent and manager

- RMON MIB collects network info. from remote devices (segments)

- Nine attribute classes:

* Statistics (fragments/collisions)

* History (stats over time)

* Alarms (compare current stats to thresholds)

* Hosts (information on active hosts)

* HostTopN (info on highest host in particular stat)

* Matrix (traffic between nodes)

* Filter (packet filtering by equation)

* Packet Capture (provides packet capture)

* Event (controls events form a device)

Working Paper C-2 MR9401V1

C.3 RMON-MIB
improvement to SNMP MIB, provides improvement in intelligent monitoring

developed by the Internet Engineering Task Force

requires less network traffic and overhead than SNMP proxy agents

primarily for network rather than system management tasks

Working Paper D-1 MR9401V1

Appendix D. Notes on ISO/CCITT

D.1 OSI Systems Management Framework
recognizes three management approaches

* Protocol Mgmt. - management within a communications protocol

- protocol internal mechanisms to control a particular instance of
communication

- example is transport flow-control windowing

* Layer Mgmt. - management within a layer (with several protocol instances)

- layer specific networking services to manage layer specific resources

- example is network layer routing mechanisms, link layer token control

* Systems Mgmt. - management across layers

- management of resources associated with multiple layers and instances

D.2 OSI Management Communication Model
- connection oriented transport required

- agents and managers are viewed as peer applications using services of CMISE

using symmetric organization

- CMISE provides SAPs to support controlled associations between agents and managers

for get/set/action and event-notification operations:

* Management Communication Services

M-Initialize: Establish management association

M-Terminate: Terminate management association

M-Abort: Unconfirmed termination

* Management Information Tree Operations

M-Create: Creates an MO instance record in the MIT

M-Delete: Deletes an MO instance from MIT

* Managed information manipulation services

M-Get: Retrieve information

• Aggregate (bulk) and selective (filtered) retrieval

M-Cancel-Get: Cancel retrievals

Working Paper D-2 MR9401V1

M-Set: Change an attribute value

M-Action: Invoke an MO operation

M-Event-Report: Generate an MO event report to a manager

- CMISE uses ACSE and ROSE to support services

- Agents perform:

* Get/Set/Action selection

* Event detection

* Event forwarding and discrimination processing

- forward is to managing entities enrolled to get events, from MIT records

- Managed Object (MO):

* provides notifications

* performs operations

* contains attributes

* is a superset of OO data model, which has only operations and attributes

- Note bulk and selective retrieve are not provided by SNMP, but SNMP2 will offer bulk.

- Note action command for explicit operation invocation is not available in SNMP (must use Set
command with a shell script built from the set to invoke an operation - the limited set command
provides less capability in passing parameters and in synchronizing invokes)

D.3 CMIP MIB
- Agent maintains Management Information Tree (MIT) database

- MIT has numerous managed objects (MOs)

- CMIP can create, delete, retrieve, or change MOs in the MIT, invoke
operations, or receive event notifications

- MOs are hierarchically arranged in MIT, similar to X.500 directory tree

* Relative distinguishing name (RDN) defines instance of MO

and is part of the instance attributes

* RDN concatenated with MIT path from root to node is unique DN

* MOs provide notifications, perform operations, and contain
attributes

- MIT is dynamic database

* MIT is determined dynamically

* Provides flexibility and efficiency in managed information access

Working Paper D-3 MR9401V1

* Managing entities can control the contents and structure of the
database

* Significant implementation difficulties

- resources to store and process cannot be predicted at
design time

* Changes in MIT may result in corruption of the database

- MO could be deleted while other MOs have pointers to it

- each application needs to build and maintain its own
subset

- explicit means to represent relationships between MOs is available

* provides efficient means to correlate related data items for
analysis

- broadcast storms

- IP down failures in a string

D.4 Fundamental Steps to Build an OSI Managed Agent
1. Identify class structure and inheritance relations among managed objects

- identify similarities of managed elements

- capture similar elements into MO classes

- develop MO hierarchy and inheritance relationships

2. Design and specify MO syntactical structures using GDMO

- look first for standardized MOs from standards committees

- define managed attributes, operations, and event notifications for each MO class

3. Design generic MIT structure for the device

Working Paper E-1 MR9401V1

Appendix E. Notes on GNMP

E.1 GNMP by NIST
- is an integral part of OMNIPoint 1

- uses OSI standards complaint protocols and services (CMIP/CMISE)

- has management information definitions

* layer 1 and 2 network functions of the OSI basic reference model

* layer 3 and 4 also included in part

* includes the OIW MIL, aligned with NMF

* future layers, new stable standards definitions with future releases

- layer 3 through 7 in Version 2

- definition of applications and services outside of OSIRM

- computer operating systems

- database management systems

- has seven systems management functions

* Object Management Function

* State Management Function

* Attributes for Representing Relationships

* Alarm Reporting Function

* Event Report Management Function

* Log Control Function

* Security Alarm Reporting Function

- has two optional peer entity authentication modes

1 username and password fields of simple credentials using ACSE service and
protocol for definition of a new functional unit (authentication).
Authentication is compared against authorized users list - passwords are
transmitted in the clear. Username and password distribution is beyond
scope of GNMP

2 all of mode 1, with a hash function applied to the authentication information.
Time stamp may be included. Hash function is the Secure Hash Algorithm,
but other hash algorithms may be supported (MD5 in part 12 of stable

Working Paper E-2 MR9401V1

implementor's agreements). As with mode 1, username and password
distribution is beyond scope of GNMP

- Security Features

* Authentication - peer entity and data origin authentication

* Access Control - currently full access to authenticated associations

* future features

- authentication - peer entity and data origin authentication

- access control - access control mechanisms within authenticated
association

- confidentiality - connectionless

- integrity - connectionless

- primary source of specifications is part 18 of the OIW Stable Implementation Agreements

* provides implementation specifications for network mgmt. based on CMIP/CMISE

- additional specifications include:

* IEEE 802.1B LAN/MAN Management

* IEEE 802.3 Repeater Management

* ANSI X3T9.5 FDDI Station Management

* CCITT Study Group IV Generic Network Information Model

* ISO/IEC JTC1/SC6 Transport and Network Layer Management

* Network Management Forum

- GNMP acts as a manager's manager: building a hierarchical NMS with std. exchange
between integrators, and between integrators and managers.

- GNMP does not include analysis of management information and HMI requirements

* only addresses interoperability between network management components

- GNMP method to build interoperable NMSs:

1. Develop plan for partitioning network management responsibilities

- number, location, size, and scope

2. Authentication determinations (where, what)

3. GOSIP application requirements for each manager and integrator

4. Managed object selections for each manager and integrator

- determination of need optional attributes and conditional packages

- name binding determination for relationships between objects

Working Paper E-3 MR9401V1

5. Specification of protocol requirements for each integrator and manager

- NIST GNMP Users Guide under development

E.2 GNMP Conformance Requirements
* Management Communications

1. satisfy part 18, clause 8.3.1 of June 1992 Stable Implementor's
Agreements

2. provide ACSE services and protocols as in GOSIP v.2, section 4.2.7.1 and

modified per part 18, clause 6.5 of Stable Implementor's
Agreements

3. provide ROSE services and protocol as in ISO 9072-1 and ISO 9072-2, and

modified per part 18, clause 6.5 of Stable Implementor's
Agreements

4. support presentation and session layer services per part 5, clause 13.7
of the June 1992 Stable Implementor's Agreements.

5. VT, FTAM and MHS as required to be in compliance with GOSIP v.2
(sections 4.2.7.2, 4.2.7.3, 4.2.7.4, 5.3.1 and 5.3.2).

* Management Information

1. include at least one managed object

2. selected, where applicable, from MO definitions in referenced
documentation and implementation agreements:

- Definition of Management Information

- IEEE 802.1B LAN/MAN Management

- IEEE 802.3 Repeater Management

- ANSI X3T9.5 FDDI Station Management

- CCITT Generic Network Information Model

- ISO/IEC JTC1/SC6 Management Information related to

OSI Network Layer Standards

- ISO/IEC JTC1/SC6 Management Information related to

IS to IS Intra-Domain Routing Information Exchange Protocol

- ISO/IEC JTC1/SC6 Management Information related to OSI

Transport Layer Standards

- Annexes A and B of part 18 of OIW SIAs

- NMF Management Information Library

Working Paper E-4 MR9401V1

- ISO/IEC 10164-x System Management Functions

3. MO specification shall include:

a. document from which MO is selected

b. optional attributes and conditional packages required

c. at least one name binding for each MO selected

4. MOs not from referenced documentation shall satisfy part 18, clause
8.3.3 of the stable implementor's agreements

5. MOs not from referenced documentation shall use techniques and
templates specified in GDMO

6. MOs and elements of MOs not from referenced documentation shall be
built as possible using MOs and element of MOs from the referenced
documentation as superclasses

7. All new MOs shall have registered object identifiers and must be
publicly available

8. Management Information Catalog may be used for identification of
additional managed object definitions

* Systems Management

1. satisfy the requirements for systems management in part 18, clause
8.3.2 of the OIW stable implementor's agreements

2. selected systems management functions from part 18, clause 8.3.2 shall

be identified

3. Agent role, manager role, or both roles shall be specified for each
system management functional unit selected

* Security

1. Mode 1 or Mode 2 peer-entity authentication shall be specified

2. ACSE extensions shall be used during association establishment for

peer-entity authentication per ISO 8649 and 8650

3. Authentication shall use simple credentials per part 3 of ISO 9594 for

use in the authentication field of the ACSE PDU.

4. Simple authentication as defined in part 8, section 2 of ISO 9594 shall

be used

5. Directory is not mandatory, therefore, authentication functionality shall

be performed by the authenticating entity.

6. Password usage shall conform to FIPS Pub. 112

Working Paper E-5 MR9401V1

E.3 GNMP Testing
* Conformance Testing

- Products will be tested in accredited GNMP testing laboratory

- compliant products will have registration in the conformance tested

GOSIP product register

* Interoperability Testing

- commercially available interoperability testing services

- on site multi-vendor testing

- interoperability test and registration service register of the GOSIP
register database will maintain list of recognized interoperability
services

- minimum interoperability test suites will be identified and maintained
by the U.S. GOSIP Testing Program

E.4 GNMP and SNMP
* Future work item to integrate GNMP and SNMP into a single NMS

E.5 GNMP Ensembles
* MOs and SMFs that solve a particular management problem

* Provides

- Problem to be solved

- Requirements associated with the problem

- Solution to the problem

- Standards and MOs making up the solution to the problem

* NMF developed concept and is developing specific ensembles:

- OSI Interworking ensemble

- Reconfigurable Circuit Service: Configuration Management (RCS) ensemble

* NIST will consider future inclusion of ensembles to GNMP

Working Paper E-6 MR9401V1

E.6 Documentation
v.1 GNMP specification

anonymous ftp (osi.ncsl.nist.gov or 129.6.48.100); type ftamosi

./pub/gnmp/gnmp.asc --ascii

./pub/gnmp/gnmp.ps --Postscript

./pub/gnmp/gnmp.W51 --WordPerfect 5.1

Postscript figures are in same subdirectory as figN.ps where n=1,2,3

NIST stable implementors agreements

anonymous ftp (osi.ncsl.nist.gov or 129.6.48.100); type ftamosi

./pub/oiw/agreements/XS-9112.asc --ascii

./pub/oiw/agreements/Xs-9112.w51 --WordPerfect 5.1

Additional documentation

NTIS 1-703-487-4650

IEEE Computer Society Press 1-800-272-6657

Network Mangement Forum 1-908-766-1544

ANSI 1-212-642-4900

ISO/IEC 41-22-749-01-11

Working Paper F-1 MR9401V1

Appendix F. Notes on OSF DME

Note: DME has been dropped at OSF. The material below is for reference only.

Management User Interface

Management Applications

Management
Services

Application
Services

Object Services

Dev.
Tools

DCE
Services

Management Protocols

Figure F-1. DME Architecture

The OSF DME supports the ECS System Management sub-architecture objectives by providing the
foundation of a productive and cost-effective enterprise management of heterogeneous distributed
environments by providing the following features:

• Consistent user interface

• Stable and uniform services

• Consistent architectural framework and APIs for integration between applications

• Platform, network, operating system and vendor independence

• Flexible and scalable to local management policies such as centralized or distributed

• Interoperable, supporting multi-vendor networks to appear as a single logical entity,
enabling the transparent implementation of software applications on the entire
configuration.

The DME Architecture, including DME Services and Third Party/User-developed applications will
utilize the OSF Motif Graphic User Interface in its Management User Interface (MUI), providing
consistency across all applications.

The OSF DME architecture, consists of three major components:

Working Paper F-2 MR9401V1

• Management Services provided by the (Network Management Option or NMO)

• Object Services provided by the (Management Framework or MF)

• DME Distributed Services or DS, consisting of:

- License Management Service (LMS)

- Software Distribution Service (SDS)

- Event Services (EVS)

- Subsystem Management Service (SMS)

- Personal Computer Services

The DME architecture provides the following Distributed Service (DS): License Management
Service (LMS), Software Distribution Service (SDS), Event Services (EVS), Subsystem
Management Service (SMS), and Personal Computer Services. These services have been released
as DME version 1.0.

F.1 DME Distributed Services

F.1.1 OSF DME License Management Service (LMS)

The DME License Management Services (LMS) as depicted in Figure 4-1, utilizes the services of
OSF DCE to manage and control access to software licenses in a distributed environment. The
DME License Management Service consists of the License Server, the License creation tool, the
Client library, and the License Manager. The DCE Cell Directory Service (CDS) allows licensed
applications and license management servers to locate one another. The DCE RPC facilitates
communication between licensed applications and license servers. In addition, the DCE Security
Service is used for access control. The OSF DME License Management Service provides a vendor-
neutral mechanism for creating, distributing and using software licenses, including the following
features:

• Security

• Flexibility of Usage

• Termination Control

• Designation of Licensed Users

• Central Administration

• Security Through a Time Stamp

• Metering of License Usage

• License Queuing

• Access from a PC

The base DME technology for this services was submitted by Hewlett-Packard.

Working Paper F-3 MR9401V1

F.1.2 OSF DME Software Distribution Service (SDS)

The OSF selected Hewlett-Packard's Software Distribution Utilities for the basis of the DME
Software Distribution Service. OSF adapted the HP SDU package to the DCE Remote Procedure
Call. The Distributed Management Environment SDS automatically manages the packaging,
distribution, installation, and management of software, and supports variety of media, including
CD-ROM and tape. SDS supports a single methodology, irrespective of the underlying OS for
deploying, updating and controlling software in a heterogeneous environment. SDS uses OSF
DCE services, including RPC, Security, and Cell Directory Services.

The DME Software Distribution Service also supports highly flexible administrative policies
regarding software maintenance.

The technology utilized in the OSF DME Software Distribution Service has been adopted as the
basis of POSIX 1003.7.2 and conforms to draft 8 of that standard.

F.1.3 OSF DME Event Services (EVS)

The OSF DME Event Services delivers a basic mechanism for consistently handling events in a
distributed computing environment. It provides a common way for both system and user
applications to generate notifications of events and forward them to a destination anywhere in the
distributed environment. Applications generating events need not worry about how, when, or
where those events will be delivered and consumed.

The OSF DME EVS provides a consistent notion of time, security and context by utilizing DCE
services. A single logging mechanism for all components in a distributed environment is supported
by DME Event Services. Event Services provides notification of problems and changes occurring
in system, including forwarding, logging and filtering. Powerful, programmable filters analyze
attributes of event notifications, and include the capability to associate events with actions. The
DME Event Services also provide a high-level template language for event definition. EVS utilizes
DCE Threads, RPC, Cell Directory Service, Distributed Time Service, and Security Service.

The OSF continues to track standards of the ISO and other relevant standards regarding event
reporting and management, and plans to incorporate relevant standards as they emerge. The base
DME technology was submitted by Banyan Systems, Inc., who acquired the technology from
Wang.

F.1.4 OSF DME Subsystem Management Service (SMS)

The OSF DME Subsystem Management Service provides a consistent way to inquire about the
status of subsystems and to shut them down in an orderly fashion. SMS has a dependency
mechanism to control the order in which subsystems are started and stopped. This capability can be
used to ensure that a subsystem will not start until subsystems on which it depends are started. The
capability to notify an administrator of abnormal termination of subsystems is also provided.

Working Paper F-4 MR9401V1

F.1.5 OSF DME Personal Computer Services (PCS)

The OSF DME Personal Computer Services Provides efficient full integration and management of
DOS-based PCs from a POSIX-compliant system. The Personal Computer Services supports PC
Ally which provides a communications path between a PC and workstation that is suited to the
limitations of the MS-DOS environment. The PC-LMS (PC-License Management Service), PC-
PRS (Print Services) and PC-Agent utilize PCS Ally as a reliable communication mechanism
which allows PC applications to communicate with systems running DME. The DME Personal
Computer Services supports network licensing, event notification services, fault monitoring and
PC configuration management services. The Personal Computer Services are not currently an ECS
requirement.

F.1.6 Print Services

MIT's Palladium Print services, which are also targeted as the POSIX draft standard (1003.7.1),
have been identified as the OSF DME base print services. Although Print Services was an original
targeted DME Service, the availability of the Palladium Print Services directly from MIT and
Palladium-based applications from third party vendors has led the OSF to refocus resources to
other areas that cannot be as well addressed by third party sources and vendors.

F.2 DME Network Management Option (NMO)

The OSF DME Network Management Option (NMO) will focus on the management of enterprise
devices and events which include activities, actors, collections, control, discovery, maps,
modeling, monitoring, observation, and relationships. This option will support the incorporation
of legacy systems by supporting existing network management protocols SNMP and CMIP in
distributed environments. Bull, HP and SNI have contributed to the DME NMO, including
X/Open's XMP API which serves as a transparency layer to the DME Instrument Request Broker
(IRB). Figure F-2 details the NMO model within the DME architecture. It should be noted that
only the center box of this figure is provided by the DME architecture. The NMO provides support
for agents and third-party management applications through the SMP API and libraries. The NMO
is integrated with DCE naming services and DME Event Services. Release of the OSF DME
Network Management Option is expected mid-1994.

Working Paper F-5 MR9401V1

Ma naged Obje cts

Agent

CMI P

Applica ti on

XM P Library

Instrumentation
Request

Broke r (IRB)

Networ k M anageme nt O pt ion (NM O)

CM IP SNMP SNMP

Age nt

Ma na ged Objec ts

Figure F-2. DME Network Management Option (NMO)

F.3 DME Management Framework (MF) Object Services

The DME Object Services are provided by the DME Management Framework (MF). The
Management Framework will provide support for object-oriented computing paradigms and
supplies a consistent application programming interface (API) for interoperable distributed
management applications.

Object services will support management of Object-related characteristics and entities: Object Life
Cycle, Object Persistence, Object Notification, Object Naming, Object Security, as well as Time,
Concurrency Control and Object Message Catalogs.

DME Object Services supports two Management Request Brokers (MRBs) which are central pieces
in the Management Framework. The MRBs accept requests on objects, locate objects in the
network and forwards requests. An asymmetric or traditional MRB is supported in addition to a
symmetric or object-oriented MRB. The asymmetric MRB supports SNMP and CMIP
management protocols and collects management information from devices in the network. The
symmetric request broker uses DCE RPC mechanism, including the DCE Security Services.

Two object servers are provided. A short duration tasks object server is provided for such tasks
such as password or attribute changes. A long duration task object server is provided for tasks
such as network monitoring and configuration management.

The OSF DME will not only provide interoperability with devices/objects within DME but also
with non-DME systems at several levels. The OSF DME Object Adapter will provide support for
SNMP and CMIP, the OSI Structure of Management Information (SMI) and a common
understanding of object definitions (OMG CORBA). Proprietary management systems may be

Working Paper F-6 MR9401V1

supported through the use of gateways. The OSF DME has specified an encapsulation technique to
support this type of interoperability.

A major objective of the Object Services is CORBA compliance. Release of the OSF DME Object
Services is expected late 1994 or early 1995. DME will not provide the CORBA ORB, but will
interoperate with CORBA-compliant ORBs provided by third-party vendors, usually the operating
system vendor. As indicated in the DCE Migration and Prototype Study, Object-Orientation and
CORBA compliance are the major strategic objectives of most industry vendors, particularly in the
POSIX workstation market.

F.4 DME Management User Interface

The OSF DME is based on OSF/Motif GUI. The following additional user interface components
will be integrated within DME:

- HP OpenView Windows graphical mapping features

- High level Tivoli dialog language for object method user interaction specification

- Dialogue language to define screen layouts and actions on objects

- User interface definitions to objects stored in the managed object:

These objects will interpreted by DME Display Manager on request. The managed object includes
attributes, operations, and associated user interface in a self-contained software module

- Several views of management information available: iconic, topological and management
dialogs (command lines and dialog boxes).

F.5 DME Development Toolkit

DME framework services provide three APIs to management request brokers:

- Traditional MRB protocol stack API to SNMP and CMIP (X/Open XMP)

- ANSI-C based object-oriented API for management applications development

- C++ based object-oriented API for management applications development

These APIs will insulate the developer from the details of the management protocols and provide
evolvability with minimal recoding. The DME Development Toolkit will provide high-level tools,
including user interface development, event management support and object implementation.

Working Paper G-1 MR9401V1

Appendix G. Major Database Query Efforts
Applicable to ECS

Numerous efforts are ongoing in parallel at defining advanced information system databases and
database access. The query language is of interest to the communications sub-architecture in the
area of how the actual query is mapped to the invoking communications service. Furthermore, the
need to perform effective trend analysis with systems management data requires the use of object
or multi-relational database systems. With the development of CORBA technology, a mapping of
SQL to the CORBA IDL would be desirable. The following is an introduction to the current
advanced query languages that have potential applicability to ECS - sections G3 through G6 are
from the ECS Reference Model paper by Steve Carson.

G.1 ODMG

The Object Database Management Group (ODMG) has defined a standard method for accessing
multivendor object databases. The specification allows object database vendors to develop
independent implementations of object database technology, and provide the interchange of object-
oriented database technology without affecting applications that use the OO database. The
specification defines an object model, an object query language, object bindings or interfaces for
C++ and Smalltalk OO programming languages, and an object definition language (ODL) based on
the OMG IDL. ODMG has based most of its work on standards defined by the OMG and will
continue to modify the ODMG specification to conform with evolving OMG standards. Eventually,
ODMG will submit its specification to OMG for adoption as OMG's object querying, persistence,
and replication services. ODMG vendors have declared intent to support the ODMG-93
specification by the end of 1994.

G.2 OGIS

The Open Geodata Interoperability Specification (OGIS) is an effort to develop geodata
interoperability strategy and specification, organize a concensus process to guide development of
the OGIS, and develop resources for OGIS implementation. The version 1 Draft 1 of the OGIS is
scheduled for release on March 18, 1994, with a final draft 4 release of the OGIS scheduled for
9/15/94. The OGIS architecture relies on distributed object technology, providing interoperability
to geoprocessing services, transfer format access managers, conventional applications, GIS DB
Access managers, transformation services, distribution format access managers, legacy
applications and Open GIS applications. A virtual geodata model (VGM) working group is in the
process of developing an object-oriented model of geographic information, providing a link
between private data stores and client applications of spatial (geometric), temporal, thematic,
associative, and metadata attributes. A VGM prototype is in work by OGIS to describe geodata
object's attributes using SDTS and SAIF, defining behaviors using OMG IDL and SGL3. The test
system is the Postgres database management system. The OGIS will include the specification of a
framework. The objectives of the framework are to support tool communications, support data

Working Paper G-2 MR9401V1

exchange, support interoperable tools, support multiple layers of access, leverage existing tools,
support other external (COTS/GOTS) tools, and support distributed object environments. OGIS is
strongly considering adapting the OGIS within the common object integration framework of OMG
CORBA. Current proposed framework services of the OGIS have a strong parallel to the major
services of ECS SDPS and include the following:

• User Interface Services:

provides coherent and consistent UI for all tools, separates presentation of functionality
from its provision, involves all aspects of the framework

• Data Management Services:

supports persistent object storage and access, object links and relationships, object naming,
composite objects, transaction control, and meta-data

• Data Integration Services:

query services, meta-data services, data-driven triggers, views, work spaces and object
distribution

• Process/Task Management Services:

tool configuration, tool synchronization, task descriptions, process management, event-
driven triggers, transaction control

• Message Services:

tool registration, message broadcast and delivery, object distribution, and object
synchronization

Interface mechanisms to OGIS include the use of IDLs, APIs and the CORBA proposed Dynamic
Invocation Interface (DII). The basic services of the OGIS framework may use MITRE's DISCUS
project as a starting point. These services are being considered by MITRE for submission to the
forthcoming OMG data interchange and query object services request for specifications. These
services are detailed below:

• Exchange:

data objects wrapped in a generic OGIS package which are exchanged and unwrapped by
receiving application

• Convert:

generic data format conversion/translation service from/to OGIS VGM

• Query:

supports dynamic queries and metadata browsing

• Execute:

encapsulation services for leveraging COTS/GOTS applications

Working Paper G-3 MR9401V1

G.3 SQL3

The ANSI X3H2 Technical Committee on Database Language SQL is in the process of defining
and SQL3 object model with a target 1995 or 1996 availability date.

National and international SQL standardization committees are now focusing on development of
future extensions for meeting the stated requirements of managing complex objects in engineering
and multimedia environments. These extensions include object identifiers, abstract data types,
inheritance hierarchies, and all of the other features normally associated with object data
management.

This second substantial enhancement (ISO/IEC Project 1.21.3.4). often called SQL3, is currently
at the working draft stage with standardization expected in the 1996 time frame. The SQL3
specification is a forward-looking SQL enhancement that intends to provide a computationally
complete language for defining and managing persistent objects. SQL3 also contains Triggers and
Assertion that can form the basis of "intelligent" database management systems.

An important feature in the SQL3 specifications is known as object oriented extensions of the SQL
language including user-defined, abstract data types (ADT), including methods, object identifiers,
subtypes and inheritance, polymorphism, type templates, and integration with existing facilities.
The base data types in SQL3 include fixed-length and variable-length character strings, fixed-
length and variable-length bit strings, fixed and floating point numerics, dates, times, time stamps,
intervals, Booleans, and enumerations.

At the Application Integration Architectures Workshop (NIST, December 1993) Object Model
Soup Birds-of-a-Feather Session, it was recognized that providing matrixes of object model
features could lead to better and perhaps standard definitions of object model features. This
approach would enable a way to compose object models from OMG Component parts, establishing
Profiles for SQL3.

G.4 SQL/CLI

An emerging standard for an SQL call level interface (SQL/CLI) is under development in ISO with
Draft International Standard (DIS) status expected sometime during calendar year 1994. The call
level interface is a requirement for third-party software developers who produce "shrink-wrapped"
software for use on personal computers and workstations. They do not wish to use a Module
processor or an Embedded SQL preprocessor binding style because they do not wish to distribute
any source code with the products they sell to individual users. Instead they desire a services call
interface to SQL data repositories that can be invoked from the calling environment provided by the
host operating system. The calls to the SQL data repository can then be embedded in the object
code just like calls to any other system service.

The Call Level Interface is an alternative mechanism for executing SQL statements. SQL/CLI
consists of a number of functions that:

1) allocate and deallocate resources;

2) control connections to SQL-servers;

Working Paper G-4 MR9401V1

3) execute SQL statements using mechanisms similar to Dynamic SQL;

4) obtain diagnostic information; and

5) control transactions.

G.5 SQL/ERI

The emerging SQL External Repository Interface (SQL/ERI) standard supports integration of
heterogeneous data repositories to provide user access to all forms of data while retaining full use
of the SQL language.

An SQL/ERI Server may provide an SQL Call Level Interface binding style according to the
requirements of the emerging standard for SQL/CLI. The SQL/CLI specification should reach a
stable state in the ISO/IEC standardization process during calendar year 1994.

G.6 SQL/MM

This material is based on the ISO Working Draft text of the SQL Multimedia and Application
Packages (SQL/MM) text and on the work plan for that work (ISO/IEC JTC1/SC21 N ????.)
[Note: This material is still informal at this point since the SQL/MM work as yet has no formal
definitions and there is not sufficient time to develop one for this draft of this document.]

The SQL Multimedia and Application Packages (SQL/MM) project will specify packages of SQL
abstract data types for use in various areas. The initial work focuses on three areas where support
is urgently needed:

1. Foundation (Part 1),

2. Full Text (Part 2), and

3. Spatial. (Part 3).

Future packages (i.e. additional parts of the standard) are expected to include:

4. Still Graphics,

5. Still Images,

6. Animation,

7. Full Motion Video,

8. Audio,

9. Euclidean Geometry,

10. Seismic,

11. Geography,

12. Music, and

13. Mathematical Structures.

Working Paper G-5 MR9401V1

Each part will specify a package of abstract data type (ADT) definitions using facilities for ADT
definition provided in the Database Language SQL enhancement work, SQL3 (ISO/IEC Project
1.21.3.4). Other ISO/IEC and CCITT standards will be used as the basis of definition for SQL
ADTs and each part will provide transformations to and from standard external representations
whenever appropriate.

The main intent of this work is to allow SQL applications to use the same ADTs across different
applications areas, thereby promoting interoperability and sharing of data, and to encourage
performance optimization over a manageable collection of types. It is best if many of the needed
packages are developed under a single coordinated effort to avoid duplication or incompatible
specification of the more elementary ADTs that get used in a number of different application areas.

[Note: Little formal work has been done to insure that the ADTs defined here will interwork with
active objects defined according to OMG technology and with the Persistent Storage Manager
being defined within OMG as part of the JOSS specification.]

Working Paper H-1 MR9401V1

Appendix H. Major User and Vendor Driven
Consortia Applicable to ECS

The Report on the Application Integration Architectures Workshop (NIST, December 1993)
provides detailed information of high value in understanding the roles and charters of many
standards and industrial consortia activities in the software architectural development. A common
framework for understanding the major activities of the standards development organizations
(SDOs) and the consortia is shown below.

Domain Specific

SW Infrastructure

Object

Paradigm

O p e n
Systems

Object
Models

Interchange
Formats

ASN.1, xdr

ANS1 X3H7 Object Models
PDES ExpressProcess

Model/ Workflow
Methodology

S E I
Bus. Process
ReengineeringGUI

X
Motif

Windows

Programming
Languages

AJPO Ada 9X

X3J16 C++

X3J13 Common Lisp

Smalltalk

Name Space
x . 5 0 0

Distribution
MCC EINet

X3T3 Open Distributed Processing

OMG Object Request Broker
OSF DCE

DARPA/Cornell ISIS

X2T5 OSI

Operating
Systems

MachPosix

Configuration
Management

ANSI
X3H6
CASE Tools

Database
Management

ANSI X3H2 SQL3

X3 OODB Task Group

DARPA Persistent Obj Base

DARPA Open OODB

Object Data Management Group

RepositoryANSI X3H3 IRDS

Frameworks
OMG

P C T E

Domain specific
Interchange formats/
Data reprsentations

CALS

PDES/STEP

IGES

EDIF

VHDL

CDIF

SGML/ODA

Figure H-1. SDO and Consortia Software Activities

Understanding major consortia, their roles and inter-relationships is important to effect an up-to-
date knowledge of activities to be tracking, collaborating, and/or contributing.

H.1 X/Open

The mission of X/Open is to bring users greater value from computing through the practical
implementation of open systems. X/Open uses the OMG object model, and essentially 'brands'
technology solutions for open systems users. Key technologies 'branded' by X/Open generally
include consortia approved technologies that have undergone a series of technical solicitation and
evaluations. Recent X/Open certifications include the Open Software Foundations DCE, the OMG
CORBA, and most recently, the Tivoli Management Environment (TME) for distributed systems
management.

Working Paper H-2 MR9401V1

H.2 OMG

The mission of the Object Management Group (OMG) is to promote cross-platform interoperability
using object technology. Key functions of the OMG are to identify problems associated with the
fulfillment of their mission, place requests for specifications, evaluate the submissions, select an
appropriate solution, and publish the specification for independent vendor implementation.

H.3 COSE

The Common Open System Environment is a consortium that works to identify technology
problems, evaluate current technology solutions, and make recommendations/selections of
technologies to resolve technology problems.

H.4 OSF

The mission of the Open Software Foundation is to provide open systems solutions for the
advancement of distributed processing. Key functions of the OSF are to identify problems
associated with the fulfillment of their mission, place requests for technology, evaluate the
submissions, select an appropriate solution, integrate the solution, QA the solution, then make the
solution generally available for vendor implementation. The specific functions of the OSF may
change in light of ongoing negotiations between COSE and OSF. An announcement will be made
at UniForum; current speculation is that OSF will become a technology integrator, leaving the
technology analysis and selection process to COSE.

H.5 NMF

The mission of the Network Management Forum (NMF) is to accelerate the availability of
management solutions for networked information systems. NMF is primarily based on the OSI
Management Information Model (ISO/IEC 10165-1), although object model reconciliation with the
OMG object model has been investigated. NMF is preparing for release in 4Q94 a set of
implementation agreements and specifications for the management of networked information
systems entitled "OMNIPoint 2'. NMF has partner relationships with X/Open, OSF, OMG, UI,
NIST, and CCTA.

H.6 ATM Forum

TBS

H.7 CIL

TBS

Working Paper AB-1 MR9401V1

Abbreviations and Acronyms

ADC Affiliated Data Center

ADGE Air Defense Ground Environment

AI artificial intelligence

ANSI American National Standards Institute

API application programmer’s interface

ASCII American Standard Code for Information Interchange

ASTER Advanced Space borne Thermal Emission and Reflection Radiometer

AVHRR Advanced Very High Resolution Radiometer

CEOS Committee on Earth Observation Satellites

CINTEX CEOS Inventory Interoperability Experiment

CORBA Common Object Request Brokering Architecture

COTS commercial off-the-shelf (hardware or software)

CSMS Communications and System Management Segment

DAAC Distributed Active Archive Center

DBMS data base management system

DCE Distributed Communications Environment of OSF

E-mail electronic mail

ECS EOSDIS core system

EOS Earth Observing System

EOSDIS EOS Data and Information System

ESA European Space Agency

ESDIS Earth Science Data and Information System

ESIS European Space Information System

FIFE First ISCLSCP Field Experiment

FITS Flexible Image Transfer System

FOS Flight Operations Segment

GC Global Change

GCDIS Global Change Data Information System

Working Paper AB-2 MR9401V1

GCRP Global Change Research Program

GIF Graphical Interchange Format

GSFC Goddard Space Flight Center

GUI Graphic User Interface

H/W hardware

HITC Hughes Information Technology Corporation

HDF hierarchical data format

HMI human machine interface

IDL Interface Definition Language

IEEE Institute of Electrical and Electronic Engineers

IMS Information Management System (ECS)

IP International Participant/Partner

ISO International Standards Organization

JGOFS Joint Global Ocean Forecasting System

L0-L4 Level 0 through level 4 (processing)

LaRC Langley Research Center

kbytes Kilo-bytes (103)

Mbytes Mega-bytes (106)

MoU memorandum of understanding

MTPE Mission to Planet Earth

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputer Applications

netCDF network version of the Common Data Format

NIIT National Information Infrastructure (NII) Testbed

NRC National Research Council

NRT near real time (data)

OODBMS object oriented database management system

ODC other data center

ODL Object Description Language

OS operating system

OSF Open Systems Foundation

Working Paper AB-3 MR9401V1

OSI Open System Interconnect

PI principal investigator

POSIX Portable Operating System Interface for Computer Environments

QA quality assurance or quality assessment

RDBMS relational database management system

RFQ request for quote

RPC remote procedure call

S2000 Sequoia 2000 project

S/W software

SCF Science Computing Facility

SDPS Science Data Processing Segment

SFDU Standard Formatted Data Unit

SMC System Management Center (ECS)

SQL Structured Query Language

UIT User Interface Terminal (ESA)

UNIDATA University Data System (NSF - Atmospheric Sciences Division)

UserDIS Data Information System based on providers in the earth science user community

V0 Version Zero (EOSDIS)

WAIS Wide Area Information System

WOCE World Ocean Circulation Experiment

WWW World Wide Web

X.500 OSI standard for directory services

XBT Instrument for measuring temperature and salinity profiles with depth in the ocean

XnDIS an architectural concept to satisfy EOSDIS, GCDIS and UserDIS needs

Working Paper BI-1 MR9401V1

Bibliography

Reference models

1. Final text to ISO 10032 - Reference Model for Data Management

2. ISO/JTC1/SC21 N 8228 - Revised test of DIS 7498-1, Information Technology - Open
Systems Interconnection - Basic Reference Model, Nov. 1993, Second Edition

Open Distributed Processing

1. ISO/JTC1/SC21 N 8218 - Working Draft for Information Technology - Open
Distributed Processing - Basic Reference Model of Open Distributed Processing, Part 1:
Overview and Guide to Use, September 1993.

2. Committee Draft ISO/IEC CD 10746-3.2; ISO/JTC1/SC21 N 8125 - Information Technology -
Open Distributed Processing - Part 3: Systems Interconnection - Prescriptive Model, Dec.
1993.

3. ISO/JTC1/SC21 N 8034 - Liason Statement to the Object Management Group, Aug. 1993.

4. ISO/IEC JTC1/SC21 N - Project JTC1.21.59. Rec. X.xxx/Draft ODP Trading Function
ISO/IEC xxx: 199x/ Draft ODP Trading Function, 12 November, 1993.

Object Models

"Comparision of the OMG and ISO/CCITT Object Models", Report of the Joint NM Forum/OMG
Taskforce on Object Modeling, February 1993 .

OMG CORBA

1. OMG TC Document 93.7.2 - Object Request Broker Architecture; Version 0.0; July 18, 1993

 OMG Object Services

1. OMG Document 92.8.1 - Object Services Architecture, Revised August 28, 1992.

2. OMG Document 92.8.5 - Object Service Roadmap, Revision 1.0, 28 August 1992.

2. OMG TC Document 93.7.1 - Joint Object Services Submission: Submission Overview,
Revised July 3, 1993.

3. OMG TC Document 93.3.2 - Joint Object Services Submission: Naming Service Specification,
Revised May 14, 1993.

4. OMG TC Document 93.7.3 - Joint Object Services Submission: Event Service Specification,
Revised July 2, 1993.

5. OMG TC Document 93.7.4 - Joint Object Services Submission: Life Cycle Services
Specification, Revised July 2, 1993.

Working Paper BI-2 MR9401V1

6. OMG TC Document 93.2.4 - Joint Object Services Submission: Life Cycle and Association
Services Specification, Feb. 19, 1993.

7. OMG TC Document 93.5.3 - Joint Object Services Submission: PSM Specification, Revised
May 14, 1993

8. Common Object Services Specification, Volume I, Revision 1.0, March 1, 1994.

Database

1. ISO/JTC1/SC21/WG3 N 1614 - ISO Working Draft SQL Multimedia and Application
Packages (SQL/MM) Part 3: Spatial, Sept. 1993

2. ISO/JTC1/SC21 N 7689 - Revised Text of DIS 9579-1, Information Technology - Remote
Database Access - Part 1: Generic Model, Service and Protocol

3. ISO/JTC1/SC21 N 7596 - Working Draft SQL Call Level Interface (SQL/CLI, Jan. 1993)

4. ISO/JTC1/SC21 N 7597 - Working Draft - Persistent SQL Modules, Jan. 1993.

5. ISO/JTC1/SC21 N 7703 - Revised Text of DIS 9579-2, Information Technology - Remote
Database Access - Part 2: SQL Specification, Mar. 1993.

General OSI

1. ISO/IEC/JTC1/SC21 N 6341 - Revised Text of CD 10731, Information Technology - Open
Systems Interconnection - Conventions for the Definition of OSI Services, Aug. 1993.

2. ISO/IEC/JTC1/SC21 N 7851 - Final Text of ISO 9545:1993; - Information Technology - Open
Systems Interconnection - Application Layer Structure, May 1993.

3. ISO/IEC/JTC1/SC21 N 7669 - Text of ISO/IEC DIS 9072-1, Information Technology -
Remote Operations - Part 1: Concepts, Model, and Notation, Mar. 1993.

RO and RPC

1. ISO/JTC1/SC21 N 8212 - Revised Text of CD 11578-1.2, Information Technology - Open
Systems Interconnection - Remote Procedure Call - Part 1: Model, Sept. 1993.

2. ISO/JTC1/SC21 N 7670 - Text of ISO/IEC DIS 9072-2, Information Technology - Remote
Operations - Part 2: OSI Realizations - Remote Operations Service Element (ROSE) Service
Definition, Mar. 1993.

3. ISO/JTC1/SC21 N 7671 - Text of ISO/IEC DIS 9072-2, Information Technology - Remote
Operations - Part 3: OSI Realizations - Remote Operations Service Element (ROSE) Protocol
Specification, Mar. 1993.

Network Management Standards and Related Documentation

RFC 1157 - "A Simple Network Management Protocol" J.D. Case, May 1990

RFC 1155 - "Structure and Identification of Management Information for TCP/IP-based Internets",
M. Rose and K. McCloughrie, May 1990

Working Paper BI-3 MR9401V1

RFC 1189 - "Common Management Information Service and Protocol over TCP/IP (CMOT)", K.
McCloughrie and M. Rose, March 1991

RFC 1213 - "Management Information Base for Network Management of TCP/IP-base Internets:

MIB-II", K. McCloughrie and M. Rose, March 1991

RFC XXX - "Introduction to the Simple Network Mangement Protocol Framework", J.D. Case

ISO/IEC IS 10733 Information Technology - Telecommunications and information exchange
between systems - Elements of Management Information Related to OSI Network Layer
Standards, approved July 1992

ISO/IEC IS 10737 Information Technology - Telecommunications and information exchange
between systems - Elements of Management Information Related to OSI Transport Layer
Standards, approved July 1992

M.T. Rose, The Simple Book - An Introduction to Management of TCP/IP-based Internets,
Prentice Hall, 1990. (ISBN 0-13-812611-9)

M.T. Rose, The Open Book, A Practical Perspective on OSI, Prentice Hall, 1990.

Network Management Forum: Forum 006, "Forum Library - Volume 4: OMNIPoint 1
Definitions", Issue 1.0, August 1992

P802.1B/D20 or later, Draft Standard 802.1B: LAN/MAN Management, Jan. 27, 1992

P802.3.K/D10 or later, Draft Supplement to ANSI/IEEE Std. 802.3 - 1992 Edition, Repeater
Management, July 11, 1992

CCITT Draft Recommendation M.1300, Generic Network Information Model, November, 1991

OSI Network Management Standards (NIST-GNMP related, DME-OSI
related

A. General

NIST Special Publications 500-202, "Stable Implementation Agreements for Open Systems
Interconnection Protocols, Version 5 Edition 1"

NIST (GNMP Users Guide to version 1 GNMP)

Management Information Catalog, Issue 1.0, June 1992; jointly published by NIST, the OIW
NMSIG, and NMF

A. Architecture and Organization of Management

ISO/IEC IS 7498-4 "Information Technology - Open Systems Interconnection - Basic
Reference Model - Part 4: Management Framework", 1989

ISO/IEC IS 10040 (CCITT Rec. X.701) "Information Technology - Open Systems
Interconnection - Systems Management Overview", 1991

Working Paper BI-4 MR9401V1

B. Communication of Mangement Information

ISO/IEC IS 9595 (CCITT Rec. X. 710) "Information Technology - Open Systems
Interconnection - Management Information Service Specification - Common Management
Information Services Definition (CMIS), 1991

ISO/IEC IS 9596 (CCITT Rec. X. 711) "Information Technology - Open Systems
Interconnection - Management Information Protocol Specification - Common Management
Information Protocol Specification (CMIP), 1991

C. Structure of Management Information

ISO/IEC IS 10165-1 (CCITT Rec. X.730) "Information Technology - Open Systems
Interconnection, Management Information Services - Structure of Management Information -
Part 1: Management Information Model", 1991

ISO/IEC IS 10165-2 (CCITT Rec. X.721) "Information Technology - Open Systems
Interconnection, Management Information Services - Structure of Management Information -
Part 2: Definitions of Management Information", 1991

ISO/IEC IS 10165-4 (CCITT Rec. X.723) "Information Technology - Open Systems
Interconnection, Management Information Services - Structure of Management Information -
Part 4: Guidelines for the Definition of Managed Objects", 1991

ISO/IEC DIS 10165-5 "Information Technology - Open Systems Interconnection, Management
Information Services - Structure of Management Information - Part 5: Generic Management
Information", February 1992

ISO/IEC DIS 10165-6 "Information Technology - Open Systems Interconnection, Management
Information Services - Structure of Management Information - Part 6: Requirements and
Guidelines for Implementation Conformance Statement Proformas Associated with
Management Information", 21 February 1992

D. System Management Functions

ISO/IEC IS 10164-1 (CCITT Rec. X730) "Information Technology - Open Systems
Interconnection - Systems Management - Part 1: Object Management Function (OMF)", 1991

ISO/IEC IS 10164-2 (CCITT Rec. X731) "Information Technology - Open Systems
Interconnection - Systems Management - Part 2: State Management Function (SMF)", 1991

ISO/IEC IS 10164-3 (CCITT Rec. X732) "Information Technology - Open Systems
Interconnection - Systems Management - Part 3: Attributes for Representing Relationships
(ARR)", 1991

ISO/IEC IS 10164-4 (CCITT Rec. X733) "Information Technology - Open Systems
Interconnection - Systems Management - Part 4: Alarm Reporting Function (ARF)", 1991

Working Paper BI-5 MR9401V1

ISO/IEC IS 10164-5 (CCITT Rec. X734) "Information Technology - Open Systems
Interconnection - Systems Management - Part 5: Event Report Management Function
(ERMF)", 1991

ISO/IEC IS 10164-6 (CCITT Rec. X735) "Information Technology - Open Systems
Interconnection - Systems Management - Part 6: Log Control Function (LCF)", 1991

ISO/IEC IS 10164-7 (CCITT Rec. X736) "Information Technology - Open Systems
Interconnection - Systems Management - Part 7: Security Alarm Reporting Function (SARF)",
1991

FUTURE - Workload Monitoring Function

FUTURE - Summarization Function

FUTURE - Objects and Attributes for Access Control

FUTURE - Security Audit Trail Function

FUTURE - Accounting Metering Function

FUTURE - Test Management Function

FUTURE - Changeover Function

FUTURE - General Relationship Model Function

FUTURE - Management Domain Function

FUTURE - Management Knowledge Management Function

FUTURE - Response Time Monitoring Function

FUTURE - Scheduling Function

FUTURE - Time Management Function

E. Security Functions

NIST FIPS Pub. 112: "Password Usage", May 1985

NIST proposed FIPS: "Specifications for a Secure Has Standard", January 22, 1992

ISO/IEC IS 9594-3 "Information Technology - Open Systems Interconnection - The Directory
- Part 3: Abstract Service Definition", 1988

ISO/IEC IS 9594-8 "Information Technology - Open Systems Interconnection - The Directory
- Part 8: Authentication Framework", 1988

ISO/IEC IS 8649 Amdl 1: "Information Technology - Open SystemsInterconnection - Service
Definition for the Association Control Service Element, Amendment 1: Peer-entity
Authentication during Association Establishment", 1990

Working Paper BI-6 MR9401V1

ISO/IEC IS 8650 Amdl 1: "Information Technology - Open Systems Interconnection - Service
Definition for the Association Control Service Element, Amendment 1: Peer-entity
Authentication during Association Establishment", 1990

OMNIPoint Point Paper - Keith Willetts, NMF

	1. Introduction
	1.1 Purpose
	1.2 Organization
	1.3 Review and Approval

	2. Background
	2.1 Architecture Definition Process
	2.2 Related Documents
	2.3 ECS Context
	2.4 CSMS Context and Sub-Architecture

	3. Communications Sub-Architecture
	3.1 Assessment of Needs/Drivers
	3.2 Logical Architecture
	3.3 Implementation Architecture
	3.4 Issues

	4. Internetworking Sub-Architecture
	4.1 Assessment of Needs/Drivers
	4.2 Logical Architecture
	4.3 Implementation Architecture
	4.4 Issues

	5. System Management Sub-Architecture
	5.1 Assessment of Needs/Drivers
	5.2 Logical Architecture
	5.3 Implementation Architecture
	5.4 Issues

	Appendix A-Open Distributed
	Appendix B- OSF Distributed
	Appendix C - SNMP Management Notes
	Appendix D - Notes on ISO/CCITT
	Appendix E - Notes on GNMP

	Appendix F - Notes on OSF DME
	Appendix G - Major Database Quesry Efforts
	Appendix H - Major User & Vendor Driven Consortia
	List of Figures (Single Click Hyper Links)

